The L@m3ne55 of Passw0rds: Notes from the field

Ben Williams
Senior Security Consultant
Previously

• Presented at various conferences including BlackHat and other smaller conferences in Europe
  • Exploitable vulnerabilities security appliances
  • Enumerating internal security products/policy externally
What we are covering today

• The experience of breaking into networks and applications with a variety of password attack tools and techniques
  • only a tiny part of what we do… but…

• What works and why

• Demos

• Advice
Password Attacks are not new, but…

- Things are much the same for the defender
  - Adoption of 2FA is slow and compartmentalised
  - Users choose passwords
- Regular iterative improvements for the attacker
  - New attack techniques
  - Improved tools and frameworks
  - Improved methodology and resources
  - Moore’s law of processor improvements
  - Network bandwidth improvements
  - Tor and botnets
External Demo
External Enumeration and Attacks

- External enumeration
  - Password dictionary data
  - Internal usernames, hostnames and IP addresses
  - Email addresses, and formats
  - LinkedIn, Facebook etc.

- Attacks
  - Web applications with password authentication
  - VPN, Portals etc
  - Phishing (fake portal, outlook web access, whatever)
Demo External Enumeration
Demo External Attack
Account lockout != Bruteforce protection

- Password policy + account lockout + timeout
  - Temporary locks often lead to user enumeration
  - Attacker would likely gain access to the application

- Password policy + account lockout + manual reset
  - Attacker could gain access to the application if they can enumerate enough real users separately
  - Account lockout DoS

- Password policy + account lockout + timeout + brute-force protection
  - Can be very resilient, but unauthorised access may still be possible
Internal Demos
Internal Domain 1: Initial access

- Unauthenticated enumeration
  - Find the DCs, Workstations and Servers
- Low hanging fruit
  - Weak credentials: admin/admin, anonymous ftp and shares, snmp public/private, sa/<blank>, tomcat jboss
- Unauthenticated attacks
  - Enumerating users
  - Collecting hashes with NetBIOS/NBNS Spoofing
  - Small targeted password attack
Demo Phase 1
Internal Domain 2: Authenticated enumeration

- Authenticated enumeration
  - Identify password policy
  - Identify all users, administrators and systems
- Moderate targeted password attack
- For the credentials we have
  - Where can we login?
  - What access do we have?
- Collecting more credentials
  - Hashes
  - Plaintext passwords
Demo Phase 2
Hopping from system to system

1. Compromised account used to access other machines (1 & 2)
2. Normal User
3. Machine with higher privileged user identified to escalate privileges (3)
4. Higher Privileged User

higher privileged user account then used to compromise the user with highest privileges (4)
Internal Domain: Getting Domain Admin

• Have a coffee and repeat
  • Iterative process
  • Workstations > Servers > Domain controller
  • Scale makes it easier

• Keep going…
  • Where can we login?
  • What access do we have?
  • Collect more credentials
  • Repeat
Internal Domain 3: Beyond Domain Admin

- Active Directory Passwords
  - Dumping and cracking hashes
- What about the ones I can’t crack?
  - Find where the admins are logged in
  - In memory Mimikatz DLL injection
- Now we have lots of passwords: Hit the other infrastructure
  - Firewalls, switches, routers, appliances
  - Basically everything, but how far do you want to go?
Demo Phase 3
Access all areas

• Domain Admins, and all user hashes
  • Can reuse hashes, don’t need to crack
  • Krbtgt hash – Golden ticket attack
• Cracking passwords, to compromise non-Windows resources
  • Unconnected Web applications
  • Appliances, network kit, other infrastructure
  • Third party systems
Password Stats from Real Tests

- This is a representative composite example from several tests

<table>
<thead>
<tr>
<th>Top 10 passwords</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome123</td>
<td>53 (5.8%)</td>
</tr>
<tr>
<td>Password1</td>
<td>15 (1.6%)</td>
</tr>
<tr>
<td>Changeme2013</td>
<td>10 (1.1%)</td>
</tr>
<tr>
<td>&lt;obscure complex password&gt;</td>
<td>9 (1.0%)</td>
</tr>
<tr>
<td>&lt;football team&gt;</td>
<td>8 (0.9%)</td>
</tr>
<tr>
<td>Monday1</td>
<td>8 (0.9%)</td>
</tr>
<tr>
<td>password</td>
<td>7 (0.7%)</td>
</tr>
<tr>
<td>&lt;company reference&gt;</td>
<td>6 (0.6%)</td>
</tr>
<tr>
<td>P@ssw0rd1</td>
<td>6 (0.6%)</td>
</tr>
<tr>
<td>Summer2014</td>
<td>5 (0.5%)</td>
</tr>
</tbody>
</table>
What about password policy

- What are the important factors in password policy?

<table>
<thead>
<tr>
<th>Policy</th>
<th>Security Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enforce password history</td>
<td>24 passwords remembered</td>
</tr>
<tr>
<td>Maximum password age</td>
<td>42 days</td>
</tr>
<tr>
<td>Minimum password age</td>
<td>1 days</td>
</tr>
<tr>
<td>Minimum password length</td>
<td>7 characters</td>
</tr>
<tr>
<td>Password must meet complexity requir...</td>
<td>Enabled</td>
</tr>
<tr>
<td>Store passwords using reversible encr...</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Hash cracking process

• A structured process gets results fast

Wordlist → Wordlist + rules → Markov → Character patterns → Rainbow tables → Full brute-force

• Wordlists are huge, and based data from real compromises
• (Many millions of real users passwords)
• Character patterns – most statistically relevant first

• Crack speed depends on hash algorithm
Statistical analysis of passwords

• 50% passwords follow 13 basic rules
• For example

• Good resources for further reading:
  • http://www.praetorian.com/blog/statistics-will-crack-your-password-mask-structure
  • http://wpengine.com/unmasked/
  • http://www.datagenetics.com/blog/september32012/
How real users interpret password rules

“Passwords must contain at least 1 upper, 1 lower, 1 number, and be at least 7 characters long”

• Take a base word of 6, 7 or 8 characters
• Chose only one upper
• Make first character upper
• Add numbers on the end (one, two, or four numbers)
• Or, substitute numbers and symbols for letters which look like numbers and symbols (“P@ssw0rd!”)
• For password changes, users increment the number: "Manunited1!", "Manunited2!", "Manunited3!"…
NCC Group: Passcrack

• Two nodes, approximately £2500 for hardware
  • Each about the price of a fast gaming machine
  • + 1 Consultants time for building it
  • Currently using 5 graphics cards between the two
  • Not “nation state” level by any means
NCC Group: Passcrack

• Up to 100 billion password guesses per second

• Do you think your current password would be resilient?

• Do you think you could choose one that is?
How you could interpret password rules

“Passwords must contain at least 1 upper, 1 lower, 1 number, and be at least 7 characters long”

• Take two or three base words (10 – 15 characters, more?)
• Chose multiple upper and spread them around
• Put your numbers in different places
• Don’t use predictable L337spe@k
• When you need to change your password, actually change the base words, and use different base words for each application/site

• Examples: “£$9ThisisNotharD”, “doesnothAvetobe2cOmplex”
Make Password Attacks Harder (Top 10)

• 2FA or brute-force protection on external apps/portals
• Increase the length of passwords to 10+
  • Include user education
• Remove low hanging fruit
  • Weak credentials: admin/admin, anonymous ftp and shares, snmp public/private, sa/<blank>, tomcat jboss etc.
• Remove all legacy Windows systems: 2000, XP, 2003
• Regularly identify and disable unused user accounts
  • Ongoing maintenance task
• No service accounts in “Domain Admins” group
  • Membership of this group should be very restricted
Make Password Attacks Harder (Top 10)

• Mitigate NBNS spoofing
  • http://www.leonteale.co.uk/netbios-nbns-spoofing/
• No common local administrator account passwords
  • Microsoft LAPS:
• Active Directory password audit
  • Remediate accounts with weak passwords
• Internal network segregation
  • Separate Workstations from Servers (internal filtering)
  • Host-based firewalls
• Don’t give users “local administrator” access