
Mina Client SDK, Signature Library and Base
Components – Cryptography and
Implementation Review

O(1) Labs Operating Co.
February 21, 2022 – Version 1.0

Prepared for
Emre Tekisalp
Izaak Meckler
Aneesha Raines
Bijan Shahrokhi

Prepared by
Eric Schorn
Ava Howell

©2022 – NCC Group

Prepared by NCC Group Security Services, Inc. for O(1) Labs Operating Co.. Portions of this document
and the templates used in its production are the property of NCC Group and cannot be copied (in full or
in part) without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group’s services does not guarantee the security of a
system, or that computer intrusions will not occur.

Executive Summary

Synopsis
During October 2021, O(1) Labs engaged NCC Group’s Cryptography Services team to conduct a cryptography and
implementation review of selected components within the main source code repository for the Mina project. Mina
implements a cryptocurrency with a lightweight and constant-sized blockchain, where the code is primarily written in
OCaml. The selected components involved the client SDK, private/public key functionality, Schnorr signature logic and
several other related functions. Full access to source codewas providedwith support over Discord, and two consultants
delivered the engagement with eight person-days of effort.

Scope
The project scope centered around the main Mina repository commit a1d868f and included three central elements
and supporting documentation:
• client_sdk
– src/app/client_sdk/*

• mina_base
– src/lib/mina_base/signed_command_payload.ml
– src/lib/mina_base/signed_command.ml

• Documentation fromwithin the repository and also at:
– https://docs.minaprotocol.com/en
– https://eprint.iacr.org/2020/352

• signature_lib
– src/nonconsensus/signature_lib/private_key.ml
– src/nonconsensus/signature_lib/schnorr.ml
– src/nonconsensus/signature_lib/public_key.ml
– src/nonconsensus/rosetta_coding/coding.ml
– src/nonconsensus/snark_params/snark_params_n
onconsensus.ml

The source code files are considered the ‘entry points’ and execution flow was traced throughout the repository.

Limitations
While the in-scope functionality lies within amuch larger system context, good coverage was achieved over all in-scope
material. Execution flow was traced through the client_sdk JavaScript code, but no other non-OCaml paths (e.g. Rust,
Go or C).

Key Findings
The in-scope code was carefully architected, conservatively implemented, and generally exhibited a high degree of
quality. However, the review did uncover a set of common application flaws involving:

• Incomplete Bounds Checking on Random Private Key: The code may not detect randomness sourced from a
broken, intermittently failing or low-entropy random generator, and cannot generate a very small proportion of
legal private key values.

• Missing Private Key Validation: The codemay allowmultiple base58check encoded private keys tomap to the same
decoded value which risks confusion, downstream malleability and/or interoperability issues.

• Missing Bounds Validation of Signature Values: The code may allowmultiple signatures to be successfully verified
against the same message, and thus lead to malleability concerns.

• Outdated Dependencies and Build Warnings: The code may allow an attacker to identify and utilize vulnerabilities
in outdated dependencies to exploit the application.

As can be seen above, the majority of identified issues involved input validation. Note that the documentation (and
testing) did not prominently specify detailed encoding formats or constraints.

Strategic Recommendations
NCC Group recommends addressing the findings from this engagement and prioritizing several aspects of future
development as follows:

• Precisely define and prominently document exact encoding formats and constraints.
• Review opportunities for input validation and implement aggressive reject policies.
• Develop additional test cases to include negative code paths, particularly around input validation.

An ongoing program of incremental-testing of incremental-implementation will support a robust code base.

2 | Mina Client SDK, Signature Library and Base Components NCC Group

https://github.com/MinaProtocol/mina/tree/a1d868f303b88e4d28faeddcd76e95314d978332
https://docs.minaprotocol.com/en
https://eprint.iacr.org/2020/352

Dashboard
Target Metadata Engagement Data
Name Mina Repository Type Code Review
Type Selected components in/around client

SDK
Method Manual source code analysis

Platforms Ocaml with C/Rust bindings Dates 2021-10-11 to 2021-10-15
Environment Testing Consultants 2

Level of Effort 8 person-days

Targets
Commit a1d868f of https://github.com/MinaProtocol/mina

Finding Breakdown
Critical issues 0
High issues 0

Medium issues 2

Low issues 3

Informational issues 1
Total issues 6

Category Breakdown
Cryptography 4

Data Validation 1

Patching 1

Key
Critical High Medium Low Informational

3 | Mina Client SDK, Signature Library and Base Components NCC Group

https://github.com/MinaProtocol/mina

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 14.

Title ID Risk
Missing Private Key Validation 002 Medium
Missing Bounds Validation of Signature Values 004 Medium
Incomplete Bounds Checking on Random Private Key 001 Low
Outdated Dependencies and Build Warnings 003 Low
Issues Involving Unicode, UTF-8/16, ASCII, JavaScript, and Ocaml 005 Low
Lack of Domain Separation Tags in Random Oracles 006 Informational

4 | Mina Client SDK, Signature Library and Base Components NCC Group

Finding Details
Finding Missing Private Key Validation

Risk Medium Impact: Medium, Exploitability: Medium

Identifier NCC-E002674-002

Category Cryptography

Location • The publicKeyOfPrivateKeymethod on lines 22-29 of src/app/client_sdk/client_sdk.ml
– Within similar functions that consume a base58check encoded private key such as rawP
ublicKeyOfPrivateKey, validKeypair, signString, signPayment, signStakeDeleg
ation and signRosettaTransaction

• The of_base58_check_exn function on lines 131-133 of src/lib/signature_lib/private_key.ml
• The decode_exn function on lines 58-81 of src/lib/base58_check/base58_check.ml

Impact Without checking a required base58check encoded string length or constraining the han-
dling leading zero values, multiple encoded private keys will map to the same value. This is
exacerbated by a missing range check on the decoded value. This may result in confusion,
downstream malleability and/or interoperability issues.

Description In the context of elliptic curves, private keys are typically a non-zero scalar modulo the curve
order.1 An injective string:key encoding is desired and the correct range must be validated to
satisfy downstream assumptions.

The mina source file client_sdk.ml provides the method publicKeyOfPrivateKey imple-
mented on lines 22-29 which calculates the public key that corresponds to a supplied private
key. Early in the process (line 25), the code utilizes the Private_key.of_base58_check_exn
function. This function is implemented in private_key.ml and in turn utilizes Base58_che
ck.decode_exn to perform the checked decoding of a base58 string. This latter function is
excerpted below.

58 let decode_exn s =
59 let bytes = Bytes.of_string s in
60 let decoded =
61 try B58.decode mina_alphabet bytes |> Bytes.to_string
62 with B58.Invalid_base58_character ->
63 raise (Invalid_base58_character M.description)
64 in
65 let len = String.length decoded in
66 (* input must be at least as long as the version byte and checksum *)
67 if len < version_len + checksum_len then
68 raise (Invalid_base58_check_length M.description) ;
69 let checksum =
70 String.sub decoded
71 ~pos:(String.length decoded - checksum_len)
72 ~len:checksum_len
73 in
74 let payload =
75 String.sub decoded ~pos:1 ~len:(len - version_len - checksum_len)
76 in
77 if not (String.equal checksum (compute_checksum payload)) then
78 raise (Invalid_base58_checksum M.description) ;
79 if not (Char.equal decoded.[0] version_byte) then
80 raise (Invalid_base58_version_byte (decoded.[0], M.description)) ;
81 payload

1https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.3

5 | Mina Client SDK, Signature Library and Base Components NCC Group

https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/client_sdk/client_sdk.ml#L22-L29
https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/lib/signature_lib/private_key.ml#L131-L133
https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/lib/base58_check/base58_check.ml#L58-L81
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.3

As can be seen above, the code correctly throws exceptions for invalid characters on line 63,
a string shorter than (effectively) 5 on line 68, a bad checksum on line 78, and a bad version
byte on line 80.

However, the expected string length of an encoded public key is not specified nor checked.
Note that leading zeros (which are encoded as 1s) have no special handling logic regarding
occurrence or repetition. These statements also apply to the described enclosing code. As a
result, many different base58check encoded strings will decode to exactly the same private
key numeric value.

In addition, there is no bounds checking performed to ensure the private key lies within the
[1,r-1] (inclusive) range where r is the related curve order. This may indeed be happening
within the code behind the C/Rust bindings, but this would be obscure and extremely brittle.
While the (sibling) encoding process has a concept of max_encodable_length the decoding
process does not. Thus, if there is no downstream reduction taking place, an (egregiously)
oversized string may cause excess resource consumption during decoding or during subse-
quent arithmetic operations.

Recommendation Validate an exact required string length or disallow leading zeros. In the latter case, set and
validate a maximum input string length.

Validate that the private key lies within [1, r-1] inclusive.

The fix should likely reside within the of_base58_check_exn function implemented within
private_key.ml to cover all the ‘entry’ points in the first noted location above.

6 | Mina Client SDK, Signature Library and Base Components NCC Group

Finding Missing Bounds Validation of Signature Values

Risk Medium Impact: Medium, Exploitability: High

Identifier NCC-E002674-004

Category Cryptography

Location The verify function on lines 227-245 of src/lib/signature_lib/schnorr.ml

Impact A missing check on the bounds of the r and s signature values may allow multiple signatures
to be successfully verified against the same message, and thus lead to malleability concerns.

Description Schnorr signatures typically consist of an r integer within the [0, p-1] (inclusive) range and
an s integer within the [0, n-1] (inclusive) range, where p is the field characteristic and n is
the curve order.2 The values must be validated to lie within their relevant range to prevent
malleability issues, e.g., downstream logic may/will calculate the same result for s · G given
both s and s+n.

The verify function implemented in schnorr.ml is excerpted below. The r and s parameters
can be seen in the function declaration on line 227, a hashing mode selection takes place
within a match clause over lines 231-237, and the r parameter is provided directly to the hash
function on line 239 without having its value validated. The scenario for the s parameter is
similar with the calculation of s ·G highlighted on line 240.

227 let verify ?signature_kind ((r, s) : Signature.t) (pk : Public_key.t)
228 (m : Message.t) =
229 let hash =
230 let open Mina_signature_kind in
231 match signature_kind with
232 | None ->
233 Message.hash
234 | Some Mainnet ->
235 Message.hash_for_mainnet
236 | Some Testnet ->
237 Message.hash_for_testnet
238 in
239 let e = hash ~public_key:pk ~r m in
240 let r_pt = Curve.(scale one s + negate (scale pk e)) in
241 match Curve.to_affine_exn r_pt with
242 | rx, ry ->
243 is_even ry && Field.equal rx r
244 | exception _ ->
245 false

Note that the encoding of s and r is sufficient to include multiples of the Pasta field charac-
teristic and curve order values. Thus, all signatures become malleable. For completeness, a
brief technical exchange took place over Slack that included the following note:

@ihm: Ok- just checked. In the js build no bounds checks are performed but all
arithmetic operations still function correctly

Recommendation Validate that r lies within [0, p-1] (inclusive) and s lies within [0, n-1] (inclusive), where p
is the field characteristic and n is the curve order.

2https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki#Verification

7 | Mina Client SDK, Signature Library and Base Components NCC Group

https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/lib/signature_lib/schnorr.ml#L227-L245
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki#Verification

Finding Incomplete Bounds Checking on Random Private Key

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-E002674-001

Category Cryptography

Location • The genKeysmethod on lines 32-40 of src/app/client_sdk/client_sdk.ml
• The create function on lines 77-114 of src/lib/signature_lib/private_key.ml

Impact A random and typically illegal private key of all zeros, which may be sourced from a broken,
intermittently failing or low-entropy random generator, will not be detected. Further, a very
small proportion of private key values are not reachable.

Description In the context of elliptic curves, private keys are typically a non-zero scalar modulo the curve
order.3 The correct range must be validated to satisfy downstream assumptions.

The mina source file client_sdk.ml provides the method genKeys implemented on lines
32-40 which generates a new private key along with its public key counterpart. The process
begins with a call to the create function implemented on lines 77-114 of private_key.ml
as excerpted below.

77 let create () : t =
78 let open Js_of_ocaml in
79 let random_bytes_32 =
80 Js.Unsafe.js_expr
81 {js|(function() {
82 var topLevel = (typeof self==='object' && self.self===self && self) ||
83 (typeof global === 'object' && global.global === global && global) ||
84 this;
85 var b;
86

87 if (topLevel.crypto && topLevel.crypto.getRandomValues) {
88 b = new Uint8Array(32);
89 topLevel.crypto.getRandomValues(b);
90 } else {
91 if (typeof require === 'function') {
92 var crypto = require('crypto');
93 if (!crypto) {
94 throw 'random values not available'
95 }
96 b = crypto.randomBytes(32);
97 } else {
98 throw 'random values not available'
99 }
100 }
101 var res = [];
102 for (var i = 0; i < 32; ++i) {
103 res.push(b[i]);
104 }
105 res[31] &= 0x3f;
106 return res;
107 })|js}
108 in
109 let x : int Js.js_array Js.t = Js.Unsafe.fun_call random_bytes_32 [||] in
110 let byte_undefined () = failwith "byte undefined" in

3https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.3

8 | Mina Client SDK, Signature Library and Base Components NCC Group

https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/client_sdk/client_sdk.ml#L32-L40
https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/lib/signature_lib/private_key.ml#L77-L114
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.3

111 Snarkette.Pasta.Fq.of_bigint
112 (Snarkette.Nat.of_bytes
113 (String.init 32 ~f:(fun i ->
114 Char.of_int_exn (Js.Optdef.get (Js.array_get x i) byte_undefined))))

Random bytes are obtained on line 96 shown above. No subsequent check is made to disal-
low all zeros. While the all-zeros case is cryptographically unlikely and so the check may be
perceived to be unnecessary, the industry provides multiple examples of low-entropy, inter-
mittently failing or broken random number generators delivering fixed or otherwise invalid
values.4, 5

The logical AND implemented on line 105 above serves to limit the maximum value of the
random number (destined for the private key) such that the most significant digit is less
than or equal to 0x3f. However, the Pasta field-characteristics6 (or curve-orders) are slightly
beyond this range, notably:

0x040000000000000000000000000000000224698fc094cf91b992d30ed00000001 and
0x040000000000000000000000000000000224698fc0994a8dd8c46eb2100000001

As a result, the code is unable to produce the full (upper) range of public keys. Note that the
unreachable portion is exceedingly small in relation to the full range.

Recommendation Ensure the create function is unable to return a zero for the private key; validate the random
bytes against the all-zero case.

Consider a more precise constraint covering the entire scalar range, e.g., perhaps involving a
Big Integer reduction modulo the curve order. Refer to the definition of Full Entropy on page
4 of NIST SP 800 90c.7

4https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode-bug-destroyed-my-weekend/
5https://nvd.nist.gov/vuln/detail/CVE-2020-6616
6https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
7https://csrc.nist.gov/csrc/media/publications/sp/800-90c/draft/documents/draft-sp800-90c.pdf

9 | Mina Client SDK, Signature Library and Base Components NCC Group

https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode-bug-destroyed-my-weekend/
https://nvd.nist.gov/vuln/detail/CVE-2020-6616
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://csrc.nist.gov/csrc/media/publications/sp/800-90c/draft/documents/draft-sp800-90c.pdf

Finding Outdated Dependencies and Build Warnings

Risk Low Impact: Undetermined, Exploitability: Low

Identifier NCC-E002674-003

Category Patching

Location • src/opam.export
• src/app/libp2p_helper/src/go.mod

Impact An attacker may attempt to identify and utilize vulnerabilities in outdated dependencies to
exploit the application.

Description Using outdated dependencies with discovered vulnerabilities is one of the most common and
serious route of application exploitation. Many of the most severe breaches have relied upon
exploiting known vulnerabilities in dependencies.8

While overall dependency inspection is marginally outside of the project scope, the following
message was noticed during the initial build process:

$ opam switch import src/opam.export

<><> conf-openssl.1 installed successfully ><><><><><><><><><><><><><><><>
=> This package shouldn't be used. Please use conf-libssl.1 or conf-openssl
.2 instead.

A brief sampling of src/opam.export suggests a number of OpenSSL and field related de-
pendencies may be outdated, including:

• async_ssl.v0.13.0
• conf-libssl.2
• conf-openssl.1
• fieldslib.v0.13.0

In addition, the go.mod file noted above indicates Golang version 1.13. Golang is on a roughly
6-month release cycle with the latest version 1.17 delivered in August 2021.9 The interim
releases have introducedmeaningful changes to the language, tools, runtime and core library,
including a command line flag to enable Spectre mitigations.10 Go Ethereum has disclosed11

a critical DoS-related security vulnerability in Golang versions prior to 1.15.512 and 1.14.12 as
CVE-2020-28362.13

Finally, the build process is very complex and produces a large number of warnings. The large
amount of output may obscure true issues.

This finding is reported for completeness and caution.

Recommendation Update all project dependencies. Set a periodic gatingmilestone for reviewing dependencies.

Simplify the build process and aim to minimize the emitted warnings.

8https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-t
wo-month-old-bug/
9https://golang.org/doc/go1.17

10https://golang.org/doc/go1.15#compiler
11https://github.com/ethereum/go-ethereum/security/advisories/GHSA-m6gx-rhvj-fh52
12https://groups.google.com/g/golang-announce/c/NpBGTTmKzpM
13https://www.cvedetails.com/cve-details.php?cve_id=CVE-2020-28362

10 | Mina Client SDK, Signature Library and Base Components NCC Group

https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/opam.export
https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/libp2p_helper/src/go.mod
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://golang.org/doc/go1.17
https://golang.org/doc/go1.15#compiler
https://github.com/ethereum/go-ethereum/security/advisories/GHSA-m6gx-rhvj-fh52
https://groups.google.com/g/golang-announce/c/NpBGTTmKzpM
https://www.cvedetails.com/cve-details.php?cve_id=CVE-2020-28362

Finding Issues Involving Unicode, UTF-8/16, ASCII, JavaScript, and Ocaml

Risk Low Impact: Low, Exploitability: Medium

Identifier NCC-E002674-005

Category Data Validation

Location • Most likely in src/app/client_sdk/client_sdk.ml and src/app/client_sdk/js_util.ml related func-
tionality.

• For example, the string_bits function on lines 52-54 of src/app/client_sdk/string_sign.ml

Impact Discontinuities related to Unicode encoding and normalization involving UTF-8/16 as handled
by JavaScript and Ocaml can lead to interoperability and string malleability issues.

Description Unicode has superseded ASCII as the standard character encoding for textual information
and is typically transferred between applications as UTF-8 encoded byte streams. As the
first 128 Unicode code points (and their UTF-8 encodings) map exactly onto ‘identical’ ASCII
encodings, dissimilarities are typically not an issue for standard English characters/text. This
includes values that are encoded in base58check, which has a very constrained character set,
as consumed in client_sdk/* functionality. However, functions such as signString14 in
client_sdk.ml which is intended to sign an arbitrary string and payload_common_of_js15

in js_util.ml which extracts a freeform memo string field, must consider various character
encoding discontinuities unless their character set is tightly constrained to the lower-order
ASCII set. There are two categories of issues to consider: 1) encoding widths, 2) Unicode
normalization.

1. Encodingwidths Early versions of Unicode contained less than 216 code points (characters),
so several languages adopted a 16-bit character type, including both Java16 and JavaScript.17
More recent versions of Unicode now contain over 1M code points so have exceeded this
limit. As a result, some code points must be encoded as multiple (two) characters. This can
introduce issues over the definition of string length as well as string indexing (e.g. bytes vs
chars).

Unicode is typically encoded in variable-width UTF-8 for transport as shown below (diagram
from Wikipedia). As can be seen, the first 128 code points align nicely with ASCII. Ocaml
considers strings to be arbitrary sequences of bytes, so they can hold any kind of textual
encoding. However, the recommended encoding for storing Unicode text in OCaml strings is
UTF-8.18

14https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/client_sdk/
client_sdk.ml#L97-L102
15https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/client_sdk/
js_util.ml#L29-L44
16https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Character.html
17https://tc39.es/ecma262/multipage/ecmascript-data-types-and-values.html#sec-ecmascript-language-types-stri
ng-type
18https://ocaml.org/api/String.html

11 | Mina Client SDK, Signature Library and Base Components NCC Group

https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/client_sdk/client_sdk.ml
https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/client_sdk/js_util.ml
https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/client_sdk/string_sign.ml#L52-L54
https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/client_sdk/client_sdk.ml#L97-L102
https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/client_sdk/client_sdk.ml#L97-L102
https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/client_sdk/js_util.ml#L29-L44
https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/app/client_sdk/js_util.ml#L29-L44
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Character.html
https://tc39.es/ecma262/multipage/ecmascript-data-types-and-values.html#sec-ecmascript-language-types-string-type
https://tc39.es/ecma262/multipage/ecmascript-data-types-and-values.html#sec-ecmascript-language-types-string-type
https://ocaml.org/api/String.html

In the context ofMina’s client_sdk, (for example) an external JSONmessage arrives encoded
in UTF-8. This then ultimately becomes a JavaScript string in UTF-16. The latter string is
delivered to the Js.to_string19 function supplied by js_of_ocaml. The source code of this
function makes a number of design decisions to handle the variable widths involved while
transcoding back to Ocaml and UTF-8.20

2. Unicode normalization When entering the same logical string, differently encoded Uni-
code strings may arise from malicious intent or simply the broad range of participating de-
vices, operating systems, locales, languages and applications involved.

Divergent string encoding typically involves characters with accents or other modifiers that
have multiple correct Unicode encodings. For example, the Á (a-acute) glyph can be encoded
as a single character U+00C1 (the “composed” form) or as two separate characters U+0041
then U+0301 (the “decomposed” form). In some cases, the order of a glyph’s combining
elements is significant and in other cases different orders must be considered equivalent.21
At the extreme, the character U+FDFA can be correctly encoded as a single code point or
a sequence of up to 18 code points.22 An identifier may appear identical but in fact be
distinct, such as “Bank of Álpha” and “Bank of Álpha”. Normalization23, 24, 25 is the process
of standardizing string representation such that if two strings are canonically equivalent and
are normalized to the same normal form, their byte representations will be the same. Only
then can string comparison, ordering and cryptographic operations be relied upon.

In the context of Mina’s client_sdk, the string_bits function implemented on lines of 52-
54 of string_sign.ml converts an Ocaml string (encoded in UTF-8) into a list of bits for use in
the following derive function. As a result, the normalization issues described above become
relevant. Note that Ocaml support for Unicode has been said to be less than robust. TheMina
project does include the latest camomile26 library in src/opam.export but the in-scope code
does not appear to use it. The library’s OPAMpage indicates that it supports Unicode standard
3.2, while the most recent Unicode standard is 14.27

Recommendation The normalization concerns regarding string_bits described above and the potential for
additional instances across the code base are the primary reason for a Low severity finding
(rather than Informational). PerformNFKC28 Unicode normalization on all strings immediately
upon receipt, or constrain them to the set of ASCII values.

Beyond that, the primary purpose of this finding is to raise awareness of several issues related
to Unicode encoding. The simplest solution is to constrain (and validate) all strings to the set
of ASCII values. If a broader range is instead used, differences in encoding and normalization
will need to be handled appropriately.

19https://ocsigen.org/js_of_ocaml/3.7.0/api/js_of_ocaml/Js_of_ocaml/Js/index.html#val-to_string
20https://github.com/ocsigen/js_of_ocaml/blob/master/runtime/mlBytes.js#L20-L47
21http://unicode.org/reports/tr15/tr15-22.html
22https://www.compart.com/en/unicode/U+FDFA
23https://docs.oracle.com/javase/tutorial/i18n/text/normalizerapi.html
24https://blog.golang.org/normalization
25https://docs.rs/unicode-normalization/0.1.13/unicode_normalization/
26https://opam.ocaml.org/packages/camomile/
27https://home.unicode.org/announcing-the-unicode-standard-version-14-0/
28See question 2 of https://unicode.org/faq/normalization.html

12 | Mina Client SDK, Signature Library and Base Components NCC Group

https://ocsigen.org/js_of_ocaml/3.7.0/api/js_of_ocaml/Js_of_ocaml/Js/index.html#val-to_string
https://github.com/ocsigen/js_of_ocaml/blob/master/runtime/mlBytes.js#L20-L47
http://unicode.org/reports/tr15/tr15-22.html
https://www.compart.com/en/unicode/U+FDFA
https://docs.oracle.com/javase/tutorial/i18n/text/normalizerapi.html
https://blog.golang.org/normalization
https://docs.rs/unicode-normalization/0.1.13/unicode_normalization/
https://opam.ocaml.org/packages/camomile/
https://home.unicode.org/announcing-the-unicode-standard-version-14-0/
https://unicode.org/faq/normalization.html

Finding Lack of Domain Separation Tags in Random Oracles

Risk Informational Impact: Undetermined, Exploitability: Undetermined

Identifier NCC-E002674-006

Category Cryptography

Location • Multiple instances of Blake2 across the code base (for example)
• src/lib/random_oracle/random_oracle.ml

Impact The lack of domain separation tags in random oracles may impact security proof assumptions
and assurances.

Description There are a number of instances of Blake2 used across the code repository along with the
random_oracle.ml source file. There does not appear to be any domain separation tags in
use, which may impact security proof assumptions and assurances.

Cryptographic proofs often rely on the concept of random oracles that are instantiated in
practice using hash functions. It is considered best practice to include a domain separation
tag on a per-instance prefix when hashing, so that all uses of oracles in various places of the
protocols work on inputs from separate domains. This separation is what allows the different
proofs in the protocol to be effectively realized in practice.

As this is somewhat outside of the project scope, it was not investigated in depth and is
reported out of caution.

Recommendation Consider the need for domain separation tags.

13 | Mina Client SDK, Signature Library and Base Components NCC Group

https://github.com/MinaProtocol/mina/blob/a1d868f303b88e4d28faeddcd76e95314d978332/src/lib/random_oracle/random_oracle.ml

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

14 | Mina Client SDK, Signature Library and Base Components NCC Group

Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

15 | Mina Client SDK, Signature Library and Base Components NCC Group

	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Finding Field Definitions

