

Zcash Zebra Security Assessment

Zcash Foundation

Version 1.0 – June 27, 2023

©2023 – NCC Group

Prepared by NCC Group Security Services, Inc. for Zcash Foundation. Portions of this document and

the templates used in its production are the property of NCC Group and cannot be copied (in full or in

part) without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of

the information contained herein. Use of NCC Group’s services does not guarantee the security of a

system, or that computer intrusions will not occur.

Prepared By

Aleksandar Kircanski

Thomas Pornin

Eli Sohl

Kevin Henry

Parnian Alimi

Prepared For

Jack Gavigan

Deirdre Connolly

Teor

Maria Pilar Guerra-Arias

Arya Solhi

Alfredo Garcia

Marek Bielik

1 Executive Summary

Synopsis

In Spring 2023, the Zcash Foundation engaged NCC Group to conduct a security

assessment of the Zebrad application. Zebrad is a network client that participates in the

Zcash consensus mechanism by validating blocks, maintaining the blockchain state (best

chain and viable non-finalized chains), and gossiping blocks, transactions, and peer

addresses. Five consultants performed the review, in a total of 60 person-days.

Scope

The entire Zebra repository on branch audit-v1.0.0-rc.0 was in scope, with the following

modules highlighted as the main areas of focus: zebra-chain , zebra-client , zebra-

consensus , zebra-network , zebra-node-services , zebra-rpc , zebra-script , zebra-

state , zebra-utils . NCC Group also reviewed some issues that were fixed after the audit

tag was created. The list of these Pull Requests along with some notes are included in the

Additional Code Changes section as an appendix.

In addition, some of Zebra’s dependencies were in scope. These were listed in the zebra-

dependencies-for-audit document and are as follows:

ed25519-zebra

zcash_proofs

zcash_script

redjubjub

reddsa

NCC Group’s evaluation included the following 3 areas:

Block Validation: This target involved ensuring that Zebrad closely follows the Zcash

protocol
1
 and Zcashd implementation in block validation. A block must be structurally

valid when deserialized (zebra-chain), it must be semantically valid when its

transactions’ spending proofs and output commitments are validated (zebra-

consensus), and it must be contextually valid when appended to the tip of the chain

(zebra-state).

Cryptographic Dependencies: This target included the items that were marked as

needing Full Audit or Partial Audit in the zebra-dependencies-for-audit document.

These libraries’ primitives’ implementations, namely signature schemes and batched

zero-knowledge proof verifications, were reviewed for cryptographic vulnerabilities and

potential consensus breaking oversights.

Peer-to-peer Network: This target included network protocol handling, and peer

discovery and peer-set maintenance. Each peer’s state is isolated from other peers, and

strategies for load balancing are implemented.

This review was performed primarily by manual code review.

Limitations

The primary focus of this audit was the correctness and completeness of Zebrad as a

Zcash chain verifier node and a network participant. As such, NCC group focused on

matching the implementation to the Zcash protocol (at NU5 upgrade) and the scope did

not include testing its compatibility with the Zcashd implementation.

Key Findings

Failure to reject out of order address change requests incorrectly alters the Address

Book’s state and opens the Zebra node to address book state manipulation attacks.

•

•

•

•

•

•

•

•

•

1. https://zips.z.cash/protocol/nu5.pdf

2 / 49 – Executive Summary

https://github.com/ZcashFoundation/zebra/tree/audit-v1.0.0-rc.0
https://github.com/ZcashFoundation/zebra/blob/fc955152b72c5fe12c84f002957e945f84472a4a/book/src/dev/zebra-dependencies-for-audit.md
https://github.com/ZcashFoundation/zebra/blob/fc955152b72c5fe12c84f002957e945f84472a4a/book/src/dev/zebra-dependencies-for-audit.md
https://github.com/ZcashFoundation/ed25519-zebra/tree/3.1.0/src
https://github.com/zcash/librustzcash/tree/zcash_proofs-0.8.0/zcash_proofs/src
https://github.com/ZcashFoundation/zcash_script/tree/v0.1.8/depend/zcash/src/script
https://github.com/ZcashFoundation/redjubjub/tree/0.5.0/src
https://github.com/ZcashFoundation/reddsa/tree/0.4.0/src
https://github.com/ZcashFoundation/zebra/blob/fc955152b72c5fe12c84f002957e945f84472a4a/book/src/dev/zebra-dependencies-for-audit.md
https://zips.z.cash/protocol/nu5.pdf

Incomplete Zeroization of the Private Key allows an attacker able to scavenge data

from deallocated memory to possibly obtain enough information to reconstruct the

private part of an Ed25519 key pair, and then forge signatures.

Unbounded Rejection Sampling with Possibility of Panics results in a fragile dummy

Orchard note generation during mining.

Uncaught Nonce Reuse and Fragile Nonce Cache Eviction may prevent the self-

connection detection from working as intended.

Unenforced Constraint on Header Version in zcash_serialize may affect consensus or

interoperability.

Strategic Recommendations

Overall, the Zebra project is well documented and the implementation is well commented.

NCC Group encourages the Zcash Foundation team to continue these practices as the

library is developed and expanded.

A few instances of closed TODOs were found and reported during the assessment. These

were thoroughly investigated and resolved where appropriate by the Zcash Foundation

team.

•

•

•

•

3 / 49 – Executive Summary

2 Dashboard

Target Data Engagement Data

Name Zebrad Type Cryptography and

Implementation Review

Type Cryptography Libraries,

Zcash Node

Method Source Code Review,

Dynamic Testing

Platforms Rust, C++ Dates 2023-02-27 to 2023-05-12

Consultants 5

Level of Effort 60 person-days

Targets

https://github.com/ZcashFoundation/

zebra/tree/audit-v1.0.0-rc.0

A Zcash node implementation in Rust

https://github.com/ZcashFoundation/

ed25519-zebra/tree/3.1.0/src

A Zcash-flavored Ed25519 for use in Zebra

https://github.com/zcash/

librustzcash/tree/

zcash_proofs-0.8.0/zcash_proofs/src

A zk-SNARK circuits implementation for Zcash with

APIs for creating and verifying proofs. Review was

limited to the proof parameter download code

https://github.com/ZcashFoundation/

zcash_script/tree/v0.1.8/depend/

zcash/src/script

A Zcash script implementation. Review was limited

to Zebra’s use of the zcash_script crate as a

dependency

https://github.com/ZcashFoundation/

redjubjub/tree/0.5.0/src

A minimal RedJubjub implementation for use in

Zebra

https://github.com/ZcashFoundation/

reddsa/tree/0.4.0/src

A minimal RedDSA implementation for use in Zebra

Finding Breakdown

Critical issues 0

High issues 0

Medium issues 1

Low issues 7

Informational issues 8

Total issues 16

Category Breakdown

Data Exposure 2

Data Validation 3

Denial of Service 2

Error Reporting 2

Other 1

Patching 1

4 / 49 – Dashboard

Category Breakdown

Security Improvement Opportunity 3

Session Management 2

Component Breakdown

ed25519-zebra 2

zcash_proofs 1

zebra 1

zebra-chain 3

zebra-consensus 2

zebra-network 6

zebra-state 1

 Critical High Medium Low Informational

5 / 49 – Dashboard

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Fragile State Transition During Address Book Update Fixed 7DU Medium

Inconsistent Error and Constraint Checks for

Arithmetic Operations on Block Height

Fixed XVE Low

Incomplete Zeroization of the Private Key Fixed 3WU Low

Unbounded Rejection Sampling with Possibility of

Panics

Fixed DBV Low

Uncaught Nonce Reuse and Fragile Nonce Cache

Eviction

Fixed MMC Low

Power-of-Two-Choices Load Balancing May

Deprioritize Honest Peers

Risk Accepted 6AN Low

Unenforced Constraint on Header Version in

zcash_serialize

Fixed M2F Low

Cargo Audit and RustSec Advisories Partially Fixed GCR Low

Buffer Length Validation after Memory Allocation Fixed HV6 Info

Private Keys May Be Written to Log Files Fixed AQM Info

Potential Panic on Integer Overflow when Hashing a

Large Stream

Fixed NQ6 Info

Off-by-One Errors and Inconsistent Usage of PARAM

ETER_DOWNLOAD_MAX_RETRIES

Fixed WVM Info

Redundant Computation in Sapling and Orchard Note

Validation

Fixed MU2 Info

Off-by-One Error in zebra-network Retry Parameter Fixed VM7 Info

Incorrectly Disabled Consistency Check Fixed GHX Info

Fragile Address Limit Implementation Fixed 4FM Info

6 / 49 – Table of Findings

4 Finding Details

Fragile State Transition During Address Book

Update

Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-E005955-7DU

Component zebra-network

Category Data Validation

Status Fixed

Impact

Failure to reject out of order address change requests incorrectly alters the Address Book’s

state and opens the Zebra node to address book state manipulation attacks.

Description

The zebra_network ’s AddressBook update implementation uses MetaAddrChange ’s

apply_to_meta_addr() to update the entry’s previous state to the received updated state.

The apply_to_meta_addr() function validates the change against the previous state and

optionally returns the new MetaAddr . If the received state is not the never-attempted state

(the else condition on line 831) the current state is one of { AttemptPending , Responded ,

Failed }. In order to tolerate an address change request that is received out of order, the

implementation picks the maximum of { last_response , last_attempt , last_failure }

timestamps. Thus these timestamps will never revert to their previous values. However,

independent of what the previous state was, on line 853, the new address state is

returned. The last_connection_state records the outcome of local node’s most recent

communication attempt with this peer:

Medium

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

/// Apply this change to a previous `MetaAddr` from the address book,

/// producing a new or updated `MetaAddr`.

///

/// If the change isn't valid for the `previous` address, returns `None`.

pub fn apply_to_meta_addr(&self, previous: impl Into<Option<MetaAddr>>) ->

Option<MetaAddr> {

if let Some(previous) = previous.into() {

assert_eq!(previous.addr, self.addr(), "unexpected addr mismatch");

let previous_has_been_attempted = !

previous.last_connection_state.is_never_attempted();

let change_to_never_attempted = self

.into_new_meta_addr()

.map(|meta_addr| meta_addr.last_connection_state.is_never_attempted())

.unwrap_or(false);

if change_to_never_attempted {

if previous_has_been_attempted {

// Existing entry has been attempted, change is NeverAttempted

// - ignore the change

//

// # Security

//

// Ignore NeverAttempted changes once we have made an attempt,

// so malicious peers can't keep changing our peer connection order.

None

7 / 49 – Finding Details

Figure 1: zebra-network/src/meta_addr.rs

This can be leveraged into a replay/rewind attack in the following way. Consider a peer

address that is marked as Failed, if the peer manages to send a Ping message before the

connection shuts down, the address state will revert to Responded. Or, due to concurrent

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

} else {

// Existing entry and change are both NeverAttempted

// - preserve original values of all fields

// - but replace None with Some

//

// # Security

//

// Preserve the original field values for NeverAttempted peers,

// so malicious peers can't keep changing our peer connection order.

Some(MetaAddr {

addr: self.addr(),

services: previous.services.or_else(|| self.untrusted_services()),

untrusted_last_seen: previous

.untrusted_last_seen

.or_else(|| self.untrusted_last_seen()),

// The peer has not been attempted, so these fields must be None

last_response: None,

last_attempt: None,

last_failure: None,

last_connection_state: self.peer_addr_state(),

})

}

} else {

// Existing entry and change are both Attempt, Responded, Failed

// - ignore changes to earlier times

// - update the services from the change

//

// # Security

//

// Ignore changes to earlier times. This enforces the peer

// connection timeout, even if changes are applied out of order.

Some(MetaAddr {

addr: self.addr(),

// We want up-to-date services, even if they have fewer bits,

// or they are applied out of order.

services: self.untrusted_services().or(previous.services),

// Only NeverAttempted changes can modify the last seen field

untrusted_last_seen: previous.untrusted_last_seen,

// Since Some(time) is always greater than None, `max` prefers:

// - the latest time if both are Some

// - Some(time) if the other is None

last_response: self.last_response().max(previous.last_response),

last_attempt: self.last_attempt().max(previous.last_attempt),

last_failure: self.last_failure().max(previous.last_failure),

last_connection_state: self.peer_addr_state(),

})

}

} else {

// no previous: create a new entry

self.into_new_meta_addr()

}

}

8 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/meta_addr.rs#L785-L860
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/meta_addr.rs#L785-L860

address book updates, address state changes could execute out of order, which would

accidentally revert a state to its previous value.
2

Recommendation

Update apply_to_meta_addr() to return None when the state transition is invalid, e.g., the

request is received out-of-order and reverts the address state to a previous value.

Location

zebra-network/src/meta_addr.rs, line 853

Retest Results

2023-06-07 – Fixed

This issue is resolved in PR 6717. The fix ensures that:

An address state change that is received out-of-order, but not due to concurrency, is

rejected.

A change that is received close to the latest update, due to concurrency, is only

effective when it advances the state.

The remaining valid transitions are accepted.

1.

2.

3.

2. When concurrent state updates are applied, the address state transitions must be resolved in the

following order: NeverAttemptedAlternate < NeverAttemptedGossiped < AttemptPending <

Responded < Failed .

9 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/meta_addr.rs#L785-L860
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/meta_addr.rs#L785-L860
https://github.com/ZcashFoundation/zebra/pull/6717

Inconsistent Error and Constraint Checks for

Arithmetic Operations on Block Height

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E005955-XVE

Component zebra-chain

Category Error Reporting

Status Fixed

Impact

An instance of the Sub function for Height fails to enforce the necessary constraints and

will panic on overflow. This behavior is inconsistent with similar arithmetic functions in the

same file.

Description

Arithmetic operations Add and Sub are implemented for Height in zebra-chain/src/block/

height.rs for both Height and i32 . For example:

Figure 2: zebra-chain/src/block/height.rs

Low

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

impl Add<Height> for Height {

type Output = Option<Height>;

fn add(self, rhs: Height) -> Option<Height> {

// We know that both values are positive integers. Therefore, the result is

// positive, and we can skip the conversions. The checked_add is required,

// because the result may overflow.

let height = self.0.checked_add(rhs.0)?;

let height = Height(height);

if height <= Height::MAX && height >= Height::MIN {

Some(height)

} else {

None

}

}

}

impl Sub<Height> for Height {

type Output = i32;

/// Panics if the inputs or result are outside the valid i32 range.

fn sub(self, rhs: Height) -> i32 {

// We construct heights from integers without any checks,

// so the inputs or result could be out of range.

let lhs = i32::try_from(self.0)

.expect("out of range input `self`: inputs should be valid Heights");

let rhs =

i32::try_from(rhs.0).expect("out of range input `rhs`: inputs should be valid

Heights");

lhs.checked_sub(rhs)

.expect("out of range result: valid input heights should yield a valid result")

}

}

10 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/height.rs#L68-L100
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/height.rs#L68-L100
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/height.rs#L68-L100
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/height.rs#L68-L100
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/height.rs#L68-L100
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/height.rs#L68-L100

The Add function handles overflow with an Option result, but the Sub function will panic.

A second Sub function later in the file for the i32 type returns an Option as well, making

the above panic behavior an outlier. Panics should be used as a last resort, when there is

no possibility of recovery. Otherwise, an attacker may attempt to intentionally trigger a

panic as part of a denial-of-service attack.

Additionally, the Sub function does not enforce the same constraint checks shown on line

78 above, unlike the other functions in the same file. Therefore, even if the result of the

operation does not overflow, it may result in an invalid Height that is less than the defined

constant pub const MIN: Height = Height(0); .

Recommendation

Rewrite the Sub function to return an Option , with a result of None if overflow or

constraint violations occur.

Location

zebra-chain/src/block/height.rs

Retest Results

2023-05-02 – Fixed

This issue has been resolved incidentally as part of a larger code refactor, carried out in PR

6330, which introduced a new HeightDiff type and rewrote Height arithmetic around

these types. This change, while nontrivial, appears to resolve the issue, and the new code

was not found to introduce any new issues.

11 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/height.rs
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/height.rs
https://github.com/ZcashFoundation/zebra/pull/6330
https://github.com/ZcashFoundation/zebra/pull/6330

Incomplete Zeroization of the Private Key

Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E005955-3WU

Component ed25519-zebra

Category Data Exposure

Status Fixed

Impact

An attacker able to scavenge data from deallocated memory may obtain enough

information to reconstruct the private part of an Ed25519 key pair, and then forge

signatures.

Description

Memory scavenging attacks apply to situations where an attacker can obtain a partial view

of the memory contents of a target system after some private operations have been

performed. Zeroization is the act of erasing secret data elements (in particular private

cryptographic keys) before releasing the memory slot that holds them, so that the secret

data does not linger in the address space of the program long after such data has been

formally discarded (in the abstract machine model). In the ed25519-zebra crate,

zeroization of private keys is ensured by implementing the Zeroize trait on the

SigningKey type, which contains private keys:

However, an Ed25519 private key really consists of three elements: a seed (of length 32

bytes), and two extra elements derived from the seed through a hash function: the secret

scalar s , and the secret prefix value. The prefix is used, conjointly with the message to

sign, to deterministically derive the per-signature nonce, as specified in RFC 8032. The

Zeroize implementation, shown above, erases only the seed and the secret scalar s , but

not the prefix .

If an attacker learns the value of the prefix , then, for any signature generated with the

private key, that attacker can recompute the per-signature nonce value with the

deterministic process used by the signer, and then immediately recover the secret scalar

by applying the signature generation equation (using s = (S - r)/k mod L , in the

notations of RFC 8032: k is the public “challenge” of the signature, r is the per-signature

nonce, S is the second half of the signature value, and L is the prime group order).

Therefore, if memory scavenging attacks are considered to be a plausible enough threat in

a given usage context that zeroization of private data should be done, then not zeroizing

the prefix is a potentially severe issue.

Recommendation

The prefix field of SigningKey should be zeroized in the implementation of the

zeroize() function.

Low

impl zeroize::Zeroize for SigningKey {

fn zeroize(&mut self) {

self.seed.zeroize();

self.s.zeroize()

}

}

12 / 49 – Finding Details

https://www.rfc-editor.org/rfc/rfc8032#section-5.1.6

Location

ed25519-zebra/src/signing_key.rs, line 109

Retest Results

2023-05-04 – Fixed

NCC Group reviewed PR 73 and found that it implements the recommendation by replacing

the custom zeroizer function with a derived zeroizer on the full SigningKey struct.

13 / 49 – Finding Details

https://github.com/ZcashFoundation/ed25519-zebra/blob/612e51af2e7eaa228f9a08ad38b0b0660e510d9e/src/signing_key.rs#L109
https://github.com/ZcashFoundation/ed25519-zebra/blob/612e51af2e7eaa228f9a08ad38b0b0660e510d9e/src/signing_key.rs#L109
https://github.com/ZcashFoundation/ed25519-zebra/pull/73

Unbounded Rejection Sampling with Possibility

of Panics

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E005955-DBV

Component zebra-chain

Category Security Improvement

Opportunity

Status Fixed

Impact

The zebra-chain module implements random number generation for some types which are

primarily used for testing, without guarding against possible panics.

Description

The use of fill_bytes() in the code snippet below (from zebra-chain/src/sapling/keys.rs)

can potentially cause panics.
3
 It is recommended to use try_fill_bytes() to catch the

random number generator’s failures.
4
 In addition, the number of sampling retries by the

loop has to be bounded.

There is one instance where this can potentially be problematic for a full node with mining

support. Generating a random Rho for an Orchard note uses the same unchecked RNG API.

Low

impl Diversifier {

/// Generate a new _Diversifier_ that has already been confirmed

/// as a preimage to a valid diversified base point when used to

/// derive a diversified payment address.

///

/// <https://zips.z.cash/protocol/protocol.pdf#saplingkeycomponents>

/// <https://zips.z.cash/protocol/protocol.pdf#concretediversifyhash>

pub fn new<T>(csprng: &mut T) -> Self

where

T: RngCore + CryptoRng,

{

loop {

let mut bytes = [0u8; 11];

csprng.fill_bytes(&mut bytes);

if diversify_hash(bytes).is_some() {

break Self(bytes);

}

}

}

}

3. https://docs.rs/rand/latest/rand/trait.RngCore.html#tymethod.fill_bytes

4. For instance OsRng can, in rare occasions, fail on some platforms, and thread_rng might return a

warning if it fails to reseed itself. See https://rust-random.github.io/book/guide-err.html for more

details.

14 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/sapling/keys.rs#L176
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/sapling/keys.rs#L176
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/orchard/note.rs#L65
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/orchard/note.rs#L65
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/orchard/note.rs#L65
https://docs.rs/rand/latest/rand/trait.RngCore.html#tymethod.fill_bytes
https://rust-random.github.io/book/guide-err.html

A node with mining capabilities might use this API to generate a dummy Orchard input

note
5
 as a nullifier for the output note when creating a miner’s reward note:

Recommendation

Consider replacing the fill_bytes() usage with try_fill_bytes() and properly handle

its possible failure.

Location

zebra-chain/src/orchard/keys.rs, line 110

zebra-chain/src/sapling/keys.rs, line 189

zebra-chain/src/orchard/commitment.rs, line 30

zebra-chain/src/sapling/commitment.rs, line 42

zebra-chain/src/orchard/note.rs, line 30

zebra-chain/src/orchard/note.rs, line 65

Retest Results

2023-05-02 – Fixed

NCC Group reviewed PR 6385 and found it adequately addresses this issue. Per the

recommendation, try_fill_bytes is now used, and appropriate error types have been

introduced.

•

•

•

•

•

•

impl Rho {

pub fn new<T>(csprng: &mut T) -> Self

where

T: RngCore + CryptoRng,

{

let mut bytes = [0u8; 32];

csprng.fill_bytes(&mut bytes);

Self(extract_p(pallas::Point::from_bytes(&bytes).unwrap()))

}

}

5. https://zips.z.cash/protocol/nu5.pdf#orcharddummynotes

15 / 49 – Finding Details

https://docs.rs/rand/latest/rand/trait.RngCore.html#tymethod.try_fill_bytes
https://docs.rs/rand/latest/rand/trait.RngCore.html#tymethod.try_fill_bytes
https://docs.rs/rand/latest/rand/trait.RngCore.html#tymethod.try_fill_bytes
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/orchard/keys.rs#L110
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/orchard/keys.rs#L110
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/sapling/keys.rs#L189
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/sapling/keys.rs#L189
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/orchard/commitment.rs#L30
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/orchard/commitment.rs#L30
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/sapling/commitment.rs#L42
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/sapling/commitment.rs#L42
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/orchard/note.rs#L30
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/orchard/note.rs#L30
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/orchard/note.rs#L65
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/orchard/note.rs#L65
https://github.com/ZcashFoundation/zebra/pull/6385
https://zips.z.cash/protocol/nu5.pdf#orcharddummynotes

Uncaught Nonce Reuse and Fragile Nonce

Cache Eviction

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E005955-MMC

Component zebra-network

Category Session Management

Status Fixed

Impact

Failure to check if the nonce cache already contains the new nonce may prevent the self-

connection detection from working as intended. Incorrectly evicting an entry from the

nonce cache will have the same effect.

Description

The function negotiate_version() in zebra-network/src/peer/handshake.rs is used to

negotiate the network version used when connecting to a new peer. In order to match

outgoing messages with incoming responses, a nonce is included, and cached locally to

help identify self-connection attempts:

Figure 3: handshake.rs

It was observed that the return value of the insert function is not checked. This function

returns true if the value was successfully inserted, and false if the value was already

contained in the set. Therefore, nonce reuse could be detected at this step by checking the

return value of this function. The above freshly generates each nonce via

Nonce::default() , so the probability of a collision is negligible, but it is nevertheless

recommended to check the result of the insert operation as a precaution.

Later, in the same function, the following code handles received nonces:

Low

584

585

586

587

588

589

590

591

677

678

679

680

681

682

683

684

685

686

687

688

689

// Create a random nonce for this connection

let local_nonce = Nonce::default();

// # Correctness

//

// It is ok to wait for the lock here, because handshakes have a short

// timeout, and the async mutex will be released when the task times

// out.

nonces.lock().await.insert(local_nonce);

// Check for nonce reuse, indicating self-connection

//

// # Correctness

//

// We must wait for the lock before we continue with the connection, to avoid

// self-connection. If the connection times out, the async lock will be

// released.

let nonce_reuse = {

let mut locked_nonces = nonces.lock().await;

let nonce_reuse = locked_nonces.contains(&remote.nonce);

// Regardless of whether we observed nonce reuse, clean up the nonce set.

locked_nonces.remove(&local_nonce);

nonce_reuse

16 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/peer/handshake.rs#L571-L782
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/peer/handshake.rs#L571-L782
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/peer/handshake.rs#L584-L591
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/peer/handshake.rs#L584-L591

Figure 4: handshake.rs

If the incoming message contains a nonce currently in the cache, that means it

corresponds to a negotiation version message originating from itself, indicating a self-

connection attempt. When this occurs, an error is returned and the nonce associated with

the request is evicted from the cache.

Earlier, this finding highlighted a potential case where nonces could be re-used without

correct detection. If such a nonce is evicted after the first connection attempt then a

second connection attempt might succeed. Building on this observation, a malicious party

may attempt to replay messages or craft messages containing an observed nonce, thereby

causing the nonce to be evicted incorrectly. Subsequently, a self-connection attempt

would not be correctly identified.

Based on the above, it is recommended that the approach to nonce handling in this use

case be re-evaluated to ensure the intended security goals are met. It may be safer to

cache all nonces for a set duration to ensure that malicious or incorrect behavior cannot

force nonce eviction from the cache.

Recommendation

Consider adding an explicit check for nonce reuse when adding values to the cache and

returning HandshakeError::NonceReuse as necessary.

Consider caching nonce entries for a longer period of time to ensure that nonces are not

prematurely evicted from the cache.

Location

zebra-network/src/peer/handshake.rs

Retest Results

2023-05-04 – Fixed

NCC Group reviewed PR 6410 and found that it introduces a check on the result of nonce

insertion to cover the rare edge case of nonce collisions. The logic around nonce reuse

was also reworked to prevent malicious nonce removal. These changes appear to resolve

the issue.

690

691

692

693

•

•

};

if nonce_reuse {

Err(HandshakeError::NonceReuse)?;

}

17 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/peer/handshake.rs#L677-L693
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/peer/handshake.rs#L677-L693
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/peer/handshake.rs#L571-L782
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/peer/handshake.rs#L571-L782
https://github.com/ZcashFoundation/zebra/pull/6410

Power-of-Two-Choices Load Balancing May

Deprioritize Honest Peers

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E005955-6AN

Component zebra-network

Category Denial of Service

Status Risk Accepted

Impact

Attackers with strong levels of influence over the network may be able to deploy low-

latency peers which are disproportionately prioritized by power-of-two-choices routing,

and may be able to decrease the prioritization of honest peers on the network by artificially

inflating their latencies. This would result in situations where even though a peer retains

connections to honest peers, it may deprioritize these honest peers to the point where the

net effect is comparable to full compromise.

Description

Zebra utilizes “power of two choices” (p2c) load-balancing,
6
 which routes outbound

requests by first randomly sampling a set of known peers and then sending the request to

the lowest-latency peer in the set. While this certainly behaves well under normal

conditions and has attractive worst-case bounds,
7
 it also introduces risks against attackers

with significant influence over the network.

An ISP-level attacker, for instance, could deploy peers with exceptionally low latency, and

could even artificially inflate other peers’ latencies, thereby increasing their own level of

influence over the network. Such an attack could be difficult to detect.

For instance, in the case of an attempted eclipse attack, suppose a peer’s set of outbound

connections is 80% compromised, with only 20% of their remote peers being honest.

Ordinarily, such a peer would still be connected to the honest part of the network, and

would not be considered compromised. However, suppose further that using p2c routing,

this peer chooses two remote peers as candidates for an outbound request. The likelihood

of both these peers being honest is only 4%, and in all other cases it is expected that the

attacker’s low-latency remote peer will be prioritized over a randomly sampled honest peer.

If the sample size is larger, the probability of reaching an honest peer is even lower.

Thus, even though the peer retains honest connections, it may deprioritize these honest

peers to the point where the net effect is comparable to full compromise.

Recommendation

There are several ways this effect might be mitigated, and the following is just one

suggestion. Latencies below a certain dynamically-determined threshold (e.g. mean or

median latency) could be treated as equivalent, and the second choice could fall back to

random selection as a tiebreaker. This would retain the desired behavior of deprioritizing

abnormally high-latency peers while also avoiding prioritization of abnormally low-latency

peers.

Low

6. For full details, see https://www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf.

7. For an accessible discussion, see http://www.eecs.harvard.edu/~michaelm/postscripts/

handbook2001.pdf.

18 / 49 – Finding Details

https://www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/handbook2001.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/handbook2001.pdf

This solution comes with its own caveats: for instance, an attacker could instead flood the

network with high-latency peers, attempting to artificially inflate median latency and thus

ensure that most or all honest peers’ latencies fall below the median cutoff. In this case,

the algorithm would reduce to random selection, with effectively no load-balancing.

However, this would still be a net improvement, because an attack which inhibits load-

balancing would seem to be significantly less severe than an attack which inhibits network

connectivity.

Location

zebra-network

Retest Results

2023-05-04 – Not Fixed

The Zebra team has decided not to resolve this finding at this time. Discussion from the

team is provided in issue 6343.

Client Response

We have hardened Zebra’s peer set by limiting the number of connected peers,

randomizing peer selection, and routing block and transaction downloads to peers that

have advertised that inventory. We have considered other alternative fixes, but the risks

outweighed the potential benefits. Peer selection in distributed networks is an open

research problem, and we look forward to improvements in this area.

19 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/issues/6343

Unenforced Constraint on Header Version in

zcash_serialize

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E005955-M2F

Component zebra-chain

Category Data Validation

Status Fixed

Impact

Zebra assumes all serialization/deserialization functions cannot produce invalid data.

Unenforced constraints violate this assumption and may affect consensus or

interoperability.

Description

Zebra implements the ZCashSerialize trait for consensus-critical data.

Figure 5: zebra-chain/src/serialization/zcash_serialize.rs

Note the highlighted requirement that illegal states must be unrepresentable.

The function zcash_deserialize() for Header contains historical information regarding

the version field of the header. In particular, it specifies that the only valid version number

is 4, but that incorrect implementations in the past resulted in several blocks with an

incorrect value. The function has some special case handling for this, as well as an explicit

check that the parsed version is greater than or equal to 4:

Figure 6: zebra-chain/src/block/serialize.rs

This is similarly captured in other annotations for the version field, where it is specified

that:

Low

19

20

21

22

23

24

25

26

27

28

29

30

75

76

77

78

79

80

81

82

pub trait ZcashSerialize: Sized {

/// Write `self` to the given `writer` using the canonical format.

///

/// This function has a `zcash_` prefix to alert the reader that the

/// serialization in use is consensus-critical serialization, rather than

/// some other kind of serialization.

///

/// Notice that the error type is [`std::io::Error`]; this indicates that

/// serialization MUST be infallible up to errors in the underlying writer.

/// In other words, any type implementing `ZcashSerialize` must make illegal

/// states unrepresentable.

fn zcash_serialize<W: io::Write>(&self, writer: W) -> Result<(), io::Error>;

// # Consensus

//

// > The block version number MUST be greater than or equal to 4.

//

// https://zips.z.cash/protocol/protocol.pdf#blockheader

if version < 4 {

return Err(SerializationError::Parse("version must be at least 4"));

}

20 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/serialization/zcash_serialize.rs#L19-L30
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/serialization/zcash_serialize.rs#L19-L30
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/serialize.rs#L75-L82
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/serialize.rs#L75-L82

The only constraint is that it must be at least 4 when interpreted as an i32 .

In comparison, the corresponding zcash_deserialize() function does not perform

validation on the version field:

Figure 7: zebra-chain/src/block/serialize.rs

No instances within the codebase will currently set this value incorrectly, but it appears to

be a violation of the specified constraint. It is possible to construct a Header such that the

output of zcash_serialize will not correctly deserialize within Zebra.

Recommendation

Align the constraint checks for the version field such that any serialized Header will

correctly deserialize without an error.

Location

zebra-chain/src/block/serialize.rs

Retest Results

2023-05-04 – Fixed

NCC Group reviewed PR 6475 and found that it resolves this issue by refactoring the

constraint checks into a function called on both serialization and deserialization, in

alignment with the recommendation.

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {

writer.write_u32::<LittleEndian>(self.version)?;

self.previous_block_hash.zcash_serialize(&mut writer)?;

writer.write_all(&self.merkle_root.0[..])?;

writer.write_all(&self.commitment_bytes[..])?;

writer.write_u32::<LittleEndian>(

self.time

.timestamp()

.try_into()

.expect("deserialized and generated timestamps are u32 values"),

)?;

writer.write_u32::<LittleEndian>(self.difficulty_threshold.0)?;

writer.write_all(&self.nonce[..])?;

self.solution.zcash_serialize(&mut writer)?;

Ok(())

}

21 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/serialize.rs#L28-L43
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/serialize.rs#L28-L43
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/serialize.rs
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-chain/src/block/serialize.rs
https://github.com/ZcashFoundation/zebra/pull/6475

Cargo Audit and RustSec Advisories

Overall Risk Low

Impact Low

Exploitability Undetermined

Finding ID NCC-E005955-GCR

Component zebra

Category Patching

Status Partially Fixed

Impact

Failure to address RustSec advisories may leave publicly disclosed vulnerabilities in the

project and may damage the reputation of the project.

Description

The cargo audit tool can be used to check a project’s dependency tree against published

RustSec advisories. Running cargo audit on the audit-v1.0.0-rc.0 branch results in 6

known vulnerable crates and 6 warnings:

Vulnerabilities:

time 0.1.44 - Potential segfault in the time crate

owning_ref 0.4.1 - Multiple soundness issues in owning_ref

git2 0.14.4 - git2 Rust package suppresses ssh host key checking

libgit2-sys 0.13.4+1.4.2 - git2 does not verify SSH keys by default

remove_dir_all 0.5.3 - Race Condition Enabling Link Following and Time-of-check

Time-of-use (TOCTOU)

tokio 1.21.2 - reject_remote_clients Configuration corruption

Warnings:

ansi_term 0.11.0 - ansi_term is Unmaintained

ansi_term 0.12.1 - ansi_term is Unmaintained

directories 4.0.1 - directories is unmaintained, use directories-next instead

dirs 4.0.0 - dirs is unmaintained, use dirs-next instead

mach 0.3.2 - mach is unmaintained

net2 0.2.37 - net2 crate has been deprecated; use socket2 instead

The audit-v1.0.0-rc.0 branch was frozen approximately two months prior to the writing

of this finding. On the main branch of the project (commit 45a96b5 at the time of writing),

only the two most recently reported vulnerabilities are present:

Vulnerabilities (main / 45a96b5):

time 0.1.44 - Potential segfault in the time crate

owning_ref 0.4.1 - Multiple soundness issues in owning_ref

The 6 warnings are also present.

In general, it is recommended to keep all crates up-to-date, particularly when known

advisories are relevant. Even if the identified vulnerabilities do not affect Zebra directly,

failure to respond to advisories and update dependencies may affect the reputation of the

project.

Recommendation

Ensure dependencies are regularly audited for RustSec advisories using a tool such as

cargo audit or cargo deny , and automate the detection and response to future

Low

•

◦

◦

◦

◦

◦

◦

•

◦

◦

◦

◦

◦

◦

•

◦

◦

22 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/commit/45a96b5adc2b236f8b5f4ea235b8c294af4583ae
https://github.com/ZcashFoundation/zebra/commit/45a96b5adc2b236f8b5f4ea235b8c294af4583ae

advisories to the greatest extent possible, such as the automatic filing of a security issue

for review.

Retest Results

2023-05-04 – Partially Fixed

NCC Group reviewed PR 6217 which closes the GitHub issue associated with this finding.

This pull request introduces several version bumps and updates some documentation. The

noted vulnerable crates time and owning_ref are not updated, and cargo audit

continues to flag them. However, discussion on GitHub issue 6391 indicates that the Zebra

team does not believe these vulnerabilities impact Zebra’s security in release builds.

It was also noted that GitHub Dependabot was recently updated in PR 6508 to use the

correct label when flagging dependency updates. Additionally, PR 6657 updated the

release process documentation to explicitly include checkboxes for steps relating to

dependency update and running cargo update . Provided the process is followed, the

likelihood of missed updates should be minimized.

The release process includes a step specifying “If needed, update deny.toml”. During the

re-test, it was observed that deny.toml contains several exceptions, with justification, for

multiple version detection. Many suggest that version numbers should be updated in the

future, but this work is not explicitly tracked elsewhere. Thus, the basic instructions to

update deny.toml if needed may not make the work required in this task clear. The

documented process could be strengthened with more detailed instructions or

requirements.

Client Response

We have updated our release checklist for a human release engineer to check for security

updates or other dependency upgrades that have not been applied by our dependency

update automation.

23 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/issues/6217
https://github.com/ZcashFoundation/zebra/issues/6391
https://github.com/ZcashFoundation/zebra/pull/6508
https://github.com/ZcashFoundation/zebra/pull/6657
https://github.com/ZcashFoundation/zebra/blob/main/deny.toml
https://github.com/ZcashFoundation/zebra/blob/main/deny.toml

Buffer Length Validation after Memory

Allocation

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E005955-HV6

Component zebra-network

Category Security Improvement

Opportunity

Status Fixed

Impact

Failure to validate buffers’ length during parsing leads to unnecessary memory allocations.

Description

The AddrV2 type’s deserialization API validates the length of the (variable-length) address

after the address is read into a buffer. An unexpectedly large address can temporarily lead

to a large memory allocation on the heap. It is recommended to inspect the length of the

address and validate it before reading the addr in the code snippet below:

Note that the deserialization logic ensures that the length of the addr vector is smaller

than MAX_U8_ALLOCATION (currently 2097147 bytes) which is significantly higher than MAX_A

DDR_V2_ADDR_SIZE (currently set to 512).

A version 2 address can be received as part of an unsolicited Addr message, and it would

be prudent to reject malformed messages with minimum cost.

Recommendation

Ensure that the length of the variable-length arrays are checked before memory allocation

whenever possible.

Location

zebra-network/src/protocol/external/addr/v2.rs

Retest Results

2023-05-03 – Fixed

NCC Group reviewed PR 6320 and found that it follows the provided recommendation. The

size of the address is now read and validated prior to allocating memory for the address

itself.

Info

// > CompactSize The length in bytes of addr.

// > uint8[sizeAddr] Network address. The interpretation depends on networkID.

let addr: Vec<u8> = (&mut reader).zcash_deserialize_into()?;

// > uint16 Network port. If not relevant for the network this MUST be 0.

let port = reader.read_u16::<BigEndian>()?;

if addr.len() > MAX_ADDR_V2_ADDR_SIZE {

return Err(SerializationError::Parse(

"addr field longer than MAX_ADDR_V2_ADDR_SIZE in addrv2 message",

));

}

24 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/serialization/zcash_deserialize.rs#L187
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/serialization/zcash_deserialize.rs#L187
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-chain/src/serialization/zcash_deserialize.rs#L187
https://zips.z.cash/zip-0155#specification
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-network/src/protocol/external/addr/v2.rs#L285-L296
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-network/src/protocol/external/addr/v2.rs#L285-L296
https://github.com/ZcashFoundation/zebra/pull/6320

Private Keys May Be Written to Log Files

Overall Risk Informational

Impact High

Exploitability None

Finding ID NCC-E005955-AQM

Component ed25519-zebra

Category Data Exposure

Status Fixed

Impact

Private key elements might leak to log files through the implemented Debug trait, if used in

an application with extensive logging enabled for issue troubleshooting.

Description

The SigningKey type contains an Ed25519 key pair. An implementation of the Debug trait

for SigningKey is provided; that implementation converts the elements of the private key

to hexadecimal strings:

This is a somewhat dangerous practice because it tends to lead to situations where an

application, using the library and compiled with debug logs for issue troubleshooting, ends

up leaking the private key into log files. This situation does not currently arise in Zebra, but

the ed25519-zebra crate is a general-purpose library that could be used in other

applications with more extensive logging.

Recommendation

Only public data should be included in Debug output. In this case, the vk field contains the

public key corresponding to that private key, and that value is enough to unambiguously

designate a unique private key; the other fields should not be included in that output.

Location

ed25519-zebra/src/signing_key.rs, line 26

Retest Results

2023-05-04 – Fixed

NCC Group reviewed PR 70 and found that it resolves this issue in the recommended

manner.

Info

impl core::fmt::Debug for SigningKey {

fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {

fmt.debug_struct("SigningKey")

.field("seed", &hex::encode(&self.seed))

.field("s", &self.s)

.field("prefix", &hex::encode(&self.prefix))

.field("vk", &self.vk)

.finish()

}

}

25 / 49 – Finding Details

https://github.com/ZcashFoundation/ed25519-zebra/blob/612e51af2e7eaa228f9a08ad38b0b0660e510d9e/src/signing_key.rs#L26
https://github.com/ZcashFoundation/ed25519-zebra/blob/612e51af2e7eaa228f9a08ad38b0b0660e510d9e/src/signing_key.rs#L26
https://github.com/ZcashFoundation/ed25519-zebra/pull/70

Potential Panic on Integer Overflow when

Hashing a Large Stream

Overall Risk Informational

Impact Low

Exploitability None

Finding ID NCC-E005955-NQ6

Component zcash_proofs

Category Denial of Service

Status Fixed

Impact

When hashing more than 4 gigabytes of data on a 32-bit architecture, the accounting of

the amount of processed data hits an integer overflow condition that will trigger a panic if

the code is compiled in debug mode.

Description

The HashReader structure is defined in zcash_proofs/src/hashreader.rs; it wraps around a

hash function (BLAKE2b instance) and hashes a long stream of bytes as they flow. The

structure also keeps track of how many bytes have been processed so far; the byte_count

field maintains that information, and has type usize :

On 32-bit architectures, usize has size 32 bits, and thus any input larger than about 4.29

gigabytes will overflow that counter. In particular, the addition on line 51 may then trigger a

panic (if the code was compiled in debug mode), or silently truncate the count to its low 32

bits (if compilation used release mode). This issue cannot be triggered with the Zebra

implementation in its current state, since hashing is performed only on files whose size has

been explicitly verified to match the expected size for parameter files, with a maximum of

about 0.73 gigabytes (for Sprout Groth16 parameters).

Recommendation

Defining byte_count to have type u64 (i.e. with the same range as what is currently

obtained with usize on a 64-bit architecture) would make the implementation more robust

with regard to future development and protocol versions.

Location

zcash_proofs/src/hashreader.rs, line 14

Retest Results

2023-05-04 – Fixed

NCC Group reviewed PR 805 and found that it implements the recommendation of

changing byte_count ’s type to u64 .

Info

/// Abstraction over a reader which hashes the data being read.

pub struct HashReader<R: Read> {

reader: R,

hasher: State,

byte_count: usize,

}

26 / 49 – Finding Details

https://github.com/zcash/librustzcash/blob/zcash_proofs-0.8.0/zcash_proofs/src/hashreader.rs#L14
https://github.com/zcash/librustzcash/blob/zcash_proofs-0.8.0/zcash_proofs/src/hashreader.rs#L14
https://github.com/zcash/librustzcash/blob/ccb0444b6d799313604163738091e9c0ca94cf2a/zcash_proofs/src/hashreader.rs#L51
https://github.com/zcash/librustzcash/blob/zcash_proofs-0.8.0/zcash_proofs/src/hashreader.rs#L14
https://github.com/zcash/librustzcash/blob/zcash_proofs-0.8.0/zcash_proofs/src/hashreader.rs#L14
https://github.com/zcash/librustzcash/pull/805

Off-by-One Errors and Inconsistent Usage of P

ARAMETER_DOWNLOAD_MAX_RETRIES

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E005955-WVM

Component zebra-consensus

Category Error Reporting

Status Fixed

Impact

The PARAMETER_DOWNLOAD_MAX_RETRIES may not behave as expected due to a potential off-

by-one error.

Description

The parameter PARAMETER_DOWNLOAD_MAX_RETRIES is defined in zebra-consensus/src/

primitives/groth16/params.rs:

Figure 8: params.rs

As noted, this parameter represents the number of times to retry the download of groth16

parameters. However, later in the same file the following description is given:

Figure 9: params.rs

Here, the parameter is claimed to specify the number of download attempts, not the

number of retry attempts. The implementation matches the described behavior and uses

this parameter to cap the total number of download attempts; see

retry_download_sapling_parameters() :

Info

18

19

20

21

22

63

64

65

66

67

68

69

70

132

133

134

135

136

137

138

139

140

/// The maximum number of times to retry download parameters.

///

/// Zebra will retry to download Sprout of Sapling parameters only if they

/// failed for whatever reason.

pub const PARAMETER_DOWNLOAD_MAX_RETRIES: usize = 3;

impl Groth16Parameters {

/// Download if needed, cache, check, and load the Sprout and Sapling Groth16

parameters.

///

/// # Panics

///

/// If the parameters were downloaded to the wrong path.

/// After `PARAMETER_DOWNLOAD_MAX_RETRIES` failed download attempts.

/// If the downloaded or pre-existing parameter files are invalid.

let mut retries = 0;

while let Err(error) = Groth16Parameters::download_sapling_parameters_once(

sapling_spend_path,

sapling_output_path,

) {

retries += 1;

if retries >= PARAMETER_DOWNLOAD_MAX_RETRIES {

panic!(

"error downloading Sapling parameter files after {} retries. {:?}

{}",

27 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs#L18-L22
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs#L18-L22
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs#L63-L70
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs#L63-L70

Figure 10: params.rs

The same behavior is implemented for retry_download_sprout_parameters() .

Documentation for both of these functions is inconsistent:

Figure 11: params.rs

For example, consider a case where PARAMETER_DOWNLOAD_MAX_RETRIES = 1 . Then this

comment specifies the following:

“Download Sapling parameters and retry 1 if it fails.” – This should likely read “1 time(s)”

if it fails (currently missing the word “time”). This description matches the implied

behavior based on the parameter name.

Panics “After 1 failed download attempts” – In other words, it will not retry 1 time. This

description matches the implemented behavior.

For consistency, the parameter should be uniformly treated as the maximum number of

download attempts, or the maximum number of retry attempts, and treated appropriately in

all documentation and code.

Recommendation

Revise documentation, parameter names, and implemented behavior to correctly capture

the behavior of PARAMETER_DOWNLOAD_MAX_RETRIES .

Location

zebra-consensus/src/primitives/groth16/params.rs

Retest Results

2023-05-03 – Fixed

NCC Group reviewed PR 6464 and found that the documentation and implemented

behavior have been updated as recommended, resolving this issue.

141

142

143

144

120

121

122

123

124

125

1.

2.

PARAMETER_DOWNLOAD_MAX_RETRIES,

error,

Groth16Parameters::failure_hint(),

);

/// Download Sapling parameters and retry [`PARAMETER_DOWNLOAD_MAX_RETRIES`] if it

fails.

///

/// # Panics

///

/// If the parameters were downloaded to the wrong path.

/// After `PARAMETER_DOWNLOAD_MAX_RETRIES` failed download attempts.

28 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs#L132-L144
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs#L132-L144
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs#L120-L125
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs#L120-L125
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-consensus/src/primitives/groth16/params.rs
https://github.com/ZcashFoundation/zebra/pull/6464

Redundant Computation in Sapling and

Orchard Note Validation

Overall Risk Informational

Impact Low

Exploitability None

Finding ID NCC-E005955-MU2

Component zebra-consensus

Category Other

Status Fixed

Impact

During Sapling and Orchard output validation, one redundant elliptic curve scalar

multiplication is performed. It may be considered for removal for efficiency purposes.

Description

In order to verify that Sapling and Orchard outputs are decryptable and consistent with ZIP

212 rules, Zebra uses the zcash_primitives crate’s try_sapling_output_recovery

function. This function is called, for example, when coinbase transaction outputs are

validated to adhere to the rules specified in ZIP 212.

Once decrypted, an output’s note is parsed. An ephemeral key validation function is passed

as a lambda:

The check implemented by the highlighted lambda function is mandated by ZIP 212. A few

lines below, the check_note_validity function is called:

Info

fn parse_note_plaintext_without_memo_ovk(

&self,

pk_d: &Self::DiversifiedTransmissionKey,

esk: &Self::EphemeralSecretKey,

ephemeral_key: &EphemeralKeyBytes,

plaintext: &NotePlaintextBytes,

) -> Option<(Self::Note, Self::Recipient)> {

sapling_parse_note_plaintext_without_memo(self, &plaintext.0, |diversifier| {

if (diversifier.g_d()? * esk).to_bytes() == ephemeral_key.0 {

Some(*pk_d)

} else {

None

}

})

}

fn check_note_validity<D: Domain>(

note: &D::Note,

ephemeral_key: &EphemeralKeyBytes,

cmstar_bytes: &D::ExtractedCommitmentBytes,

) -> NoteValidity {

if &D::ExtractedCommitmentBytes::from(&D::cmstar(note)) == cmstar_bytes {

if let Some(derived_esk) = D::derive_esk(note) {

if D::epk_bytes(&D::ka_derive_public(note, &derived_esk))

.ct_eq(ephemeral_key)

.into()

{

NoteValidity::Valid

} else {

29 / 49 – Finding Details

https://github.com/zcash/librustzcash/blob/277d07c7/zcash_primitives/src/sapling/note_encryption.rs#L553
https://github.com/ZcashFoundation/zebra/blob/5a88fe78/zebra-consensus/src/transaction/check.rs#L320
https://github.com/zcash/librustzcash/blob/277d07c7/components/zcash_note_encryption/src/lib.rs#L681
https://github.com/zcash/librustzcash/blob/277d07c7/components/zcash_note_encryption/src/lib.rs#L693

The validation highlighted in the first code snippet happens regardless of whether ZIP 212

is activated or not. This is also what the original Zcash client does; see zcash/Note.cpp.

The validation highlighted in the second code snippet aims to only validate the public key

post-ZIP 212 and is likely meant to be a blanket end-of-function validation helper. This

helper includes an ECC point multiplication and as such is not inexpensive.

Recommendation

It appears that the highlighted check inside the check_note_validity function overlaps

with the previous validation, and, as such, may be removed.

Retest Results

2023-06-07 – Fixed

This issue has been resolved in PR 848 in the librustzcash crate and PR 394 in the

orchard crate. This issue will be resolved in Zebra, once it upgrades to using these crates’

new releases as dependencies.

NoteValidity::Invalid

}

} else {

// Before ZIP 212

NoteValidity::Valid

}

} else {

// Published commitment doesn't match calculated commitment

NoteValidity::Invalid

}

}

30 / 49 – Finding Details

https://github.com/zcash/zcash/blob/219b9c68/src/zcash/Note.cpp#L400
https://github.com/zcash/librustzcash/pull/848
https://github.com/zcash/librustzcash/pull/848
https://github.com/zcash/librustzcash/pull/848
https://github.com/zcash/orchard/pull/394
https://github.com/zcash/orchard/pull/394
https://github.com/zcash/orchard/pull/394
https://github.com/zcash/orchard/pull/394

Off-by-One Error in zebra-network Retry

Parameter

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E005955-VM7

Component zebra-network

Category Security Improvement

Opportunity

Status Fixed

Impact

The parameter MAX_SINGLE_PEER_RETRIES may not behave as expected due to an off-by-

one error.

Description

Finding "Off-by-One Errors and Inconsistent Usage of PARAMETER_DOWNLOAD_MAX_RET

RIES" documented an off-by-one issue with retry behavior in zebra-consensus . This

finding documents a similar issue in zebra-network . Note that this does not represent a

security issue or vulnerability, outside of potential user error during configuration.

The following code is part of peer DNS resolution, where each peer is resolved individually,

and the complete process is repeated if no resolution is successful. The parameter

MAX_SINGLE_PEER_RETRIES implies that it dictates the number of retry attempts for a given

peer.

Figure 12: zebra-network/src/config.rs

Figure 13: zebra-network/src/config.rs

The retry function loops using for retry_count in 1..=max_retries , meaning that the

value MAX_SINGLE_PEER_RETRIES will result in 1 single attempt and not 1 retry. Therefore,

this parameter may be better named as MAX_SINGLE_PEER_ATTEMPTS or the behavior could

be updated to loop one additional time.

Recommendation

Ensure the naming of the parameter accurately reflects its usage. Either rename the

parameter to reflect the maximum number of connection attempts or revise the behavior to

reflect its current name.

Info

161

162

163

161

162

163

164

165

166

167

168

169

170

/// The number of times Zebra will retry each initial peer's DNS resolution,

/// before checking if any other initial peers have returned addresses.

const MAX_SINGLE_PEER_RETRIES: usize = 1;

// We retry each peer individually, as well as retrying if there are

// no peers in the combined list. DNS failures are correlated, so all

// peers can fail DNS, leaving Zebra with a small list of custom IP

// address peers. Individual retries avoid this issue.

let peer_addresses = peers

.iter()

.map(|s| Config::resolve_host(s, MAX_SINGLE_PEER_RETRIES))

.collect::<futures::stream::FuturesUnordered<_>>()

.concat()

.await;

31 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/config.rs#L25-L27
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/config.rs#L25-L27
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/config.rs#L161-L170
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/config.rs#L161-L170

Location

zebra-network/src/config.rs

Retest Results

2023-05-04 – Fixed

NCC Group reviewed PR 6460 and found that the recommendation has been followed: in

fact, the parameter has been renamed and the maximum number of attempts has been

updated. These changes bring the name and behavior into alignment, resolving this issue.

The DNS retry loop has also been expanded and now provides more detailed log

messages.

32 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/config.rs
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-network/src/config.rs
https://github.com/ZcashFoundation/zebra/pull/6460

Incorrectly Disabled Consistency Check

Overall Risk Informational

Impact Low

Exploitability Undetermined

Finding ID NCC-E005955-GHX

Component zebra-state

Category Data Validation

Status Fixed

Impact

Disabling checks to pass incorrect tests rather than fixing the tests themselves may

prevent the detection of bugs or other incorrect behavior.

Description

The function fetch_sprout_final_treestates() in zebra-state/src/service/check/

anchors.rs contains a block of commented code that performs an assertion that “that roots

match the fetched tree during tests”. The annotations suggest that this check was disabled

due to bad test data:

Figure 14: zebra-state/src/service/check/anchors.rs

As is, the code suggests that a required safety check has been disabled to prevent tests

from failing, which prevents the test from being run in production as well. The preferred

solution would be one of:

Fix the tests such that the check can remain enabled.

Disable this code only when tests are running.

Initial discussions with the Zebra team suggested that the latter approach would be

preferable. Furthermore, the comment suggests that this check should be refactored and

located elsewhere in the code. A task to track this change should be documented.

Recommendation

Re-enable the check and either add a flag to disable it during tests, or update tests to

correctly pass when the check is in place.

Refactor the code as recommended in the comment, or add a link to a tracked issue

detailing this work item.

Location

zebra-state/src/service/check/anchors.rs, line 158

Info

158

159

160

161

162

163

164

165

166

167

168

169

170

171

1.

2.

1.

2.

/* TODO:

- fix tests that generate incorrect root data

- assert that roots match the fetched tree during tests

- move this CPU-intensive check to sprout_anchors_refer_to_treestates()

assert_eq!(

input_tree.root(),

joinsplit.anchor,

"anchor and fetched input tree root did not match:\n\

anchor: {anchor:?},\n\

input tree root: {input_tree_root:?},\n\

input_tree: {input_tree:?}",

anchor = joinsplit.anchor

);

*/

33 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-state/src/service/check/anchors.rs#L158-L172
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-state/src/service/check/anchors.rs#L158-L172
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-state/src/service/check/anchors.rs#L158-L172
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-state/src/service/check/anchors.rs#L158-L172
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-state/src/service/check/anchors.rs#L158-L172
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-state/src/service/check/anchors.rs#L158-L172
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-state/src/service/check/anchors.rs#L158-L172
https://github.com/ZcashFoundation/zebra/blob/audit-v1.0.0-rc.0/zebra-state/src/service/check/anchors.rs#L158-L172

Retest Results

2023-05-10 – Fixed

NCC Group reviewed PR 6450 and found that the redundant (and expensive) assertion

mentioned by this finding has been removed.

Client Response

This assertion in the state Sprout anchor checking code and its accompanying comments

are outdated. Since it was written, we have modified the anchor creation code to

automatically enforce this constraint. The assertion had already been commented out in

our code, so we removed it to avoid confusion.

34 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/pull/6450

Fragile Address Limit Implementation

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E005955-4FM

Component zebra-network

Category Session Management

Status Fixed

Impact

Enforcing an underspecified address limit leads to fragile address book update.

Description

In the following code snippet from zebra-network ’s AddressBook implementation, the

helper function adds a list of peer addresses to the address book. However, it first takes

addr_limit elements from the list and then deduplicates it, as such if there are repeated

elements in the truncated list, the resulting address book will be smaller than the required

limit. It is more robust to deduplicate the list and then take addr_limit elements from it:

Info

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

/// Construct an [`AddressBook`] with the given `local_listener`, `network`,

/// `addr_limit`, [`tracing::Span`], and addresses.

///

/// `addr_limit` is enforced by this method, and by [`AddressBook::update`].

///

/// If there are multiple [`MetaAddr`]s with the same address,

/// an arbitrary address is inserted into the address book,

/// and the rest are dropped.

///

/// This constructor can be used to break address book invariants,

/// so it should only be used in tests.

#[cfg(any(test, feature = "proptest-impl"))]

pub fn new_with_addrs(

local_listener: SocketAddr,

network: Network,

addr_limit: usize,

span: Span,

addrs: impl IntoIterator<Item = MetaAddr>,

) -> AddressBook {

let constructor_span = span.clone();

let _guard = constructor_span.enter();

let instant_now = Instant::now();

let chrono_now = Utc::now();

let mut new_book = AddressBook::new(local_listener, network, span);

new_book.addr_limit = addr_limit;

let addrs = addrs

.into_iter()

.map(|mut meta_addr| {

meta_addr.addr = canonical_socket_addr(meta_addr.addr);

meta_addr

})

.filter(|meta_addr| meta_addr.address_is_valid_for_outbound(network))

.take(addr_limit)

.map(|meta_addr| (meta_addr.addr, meta_addr));

35 / 49 – Finding Details

Figure 15: zebra-network/src/address_book.rs

As this function is only used in tests, it is marked as an informational finding.

Recommendation

Clarify in the function’s description whether the implementation guarantees to add

addr_limit (unique) addresses to address book if at least addr_limit unique addresses

exist in the list, or not.

Consider deduplicating the addrs list before taking addr_limit elements from it.

Location

zebra-network/src/address_book.rs, line 143

Retest Results

2023-06-07 – Fixed

NCC Group reviewed PR 6724 and found it adequately addresses this issue.

180

181

182

183

184

185

186

187

188

for (socket_addr, meta_addr) in addrs {

// overwrite any duplicate addresses

new_book.by_addr.insert(socket_addr, meta_addr);

}

new_book.update_metrics(instant_now, chrono_now);

new_book

}

36 / 49 – Finding Details

https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-network/src/address_book.rs#L143-L188
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-network/src/address_book.rs#L143-L188
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-network/src/address_book.rs#L143-L188
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-network/src/address_book.rs#L143-L188
https://github.com/ZcashFoundation/zebra/pull/6724

5 Implementation Review Notes

This section includes various remarks that are not considered security vulnerabilities,

however fixing them will increase code quality.

Ed25519-zebra

Potentially incorrect comments: Some of the comments in src/batch.rs seem slightly off:

On line 146, the documentation of the verify() function includes a warning about

outputs differing between batched and individual verifications; however, the whole point

of ZIP 215 and the ed25519-zebra crate is indeed to ensure that batched and non-

batched verification always yield identical results on the same signatures.

On line 154, the described verification equation does not include the multiplication by

the cofactor. Such an equation would indeed lead to differences between batched and

non-batched outputs. Fortunately, the implementation itself includes the multiplication

by the cofactor (line 214).

Update: NCC Group confirmed that these notes have been addressed in https://

github.com/ZcashFoundation/ed25519-zebra/pull/75.

Reddsa and redjubjub

The redjubjub crate implements the RedDSA signature scheme over the Jubjub curve.

The reddsa crate mostly subsumes that task and provides RedDSA support for both the

Jubjub and Pallas curves; the migration of the code from redjubjub to reddsa , and its

generalization to unify support over distinct elliptic curves, are currently in an incomplete

state, resulting in some code duplication. Thus, there are currently (at least) three mostly

identical implementations of the multiplication of a curve point by a scalar with the w-NAF

method, in redjubjub/src/scalar_mul.rs, reddsa/src/scalar_mul.rs, and reddsa/src/

orchard.rs. In all three cases, the input scalar is converted to a w-NAF representation over

exactly 256 digits:

The w-NAF representation converts an input value x into signed digits, using a window

width w (expressed in bits), with the following characteristics:

Each digit is either zero, or an odd signed integer between -2
w-1

 and +2
w-1

.

Between any two non-zero digits, there are at least w digits of value zero.

n+1 output digits are sufficient to represent all possible x such that 0 ≤ x < 2
n
 + 2

n-w
.

The non_adjacent_form() function requires that the window width w lies between 2 and 8.

The use of 256 digits is then slightly wasteful for the Jubjub and Pallas curves, where

scalars are lower than the prime (sub)group order of interest:

Jubjub order is about 2
251.85

, and thus needs only 253 digits at most for w-NAF.

Pallas order is slightly below 2
254

 + 2
125.1

, leading to a maximum w-NAF scalar size of

255 digits.

Since the number of iterations in the multiplication loop is exactly equal to the number of

digits, and each iteration includes at least a curve point doubling, then some of these

doublings are wasted (they will repeatedly double the initial value of the accumulator point,

i.e. the curve identity point). On the other hand, if the non_adjacent_form() and optional_

multiscalar_mul() functions are turned into generic functions that handle arbitrary curves

•

•

•

•

•

•

•

fn non_adjacent_form(&self, w: usize) -> [i8; 256] {

// required by the NAF definition

debug_assert!(w >= 2);

// required so that the NAF digits fit in i8

debug_assert!(w <= 8);

37 / 49 – Implementation Review Notes

https://github.com/ZcashFoundation/ed25519-zebra/blob/612e51af2e7eaa228f9a08ad38b0b0660e510d9e/src/batch.rs#L146
https://github.com/ZcashFoundation/ed25519-zebra/blob/612e51af2e7eaa228f9a08ad38b0b0660e510d9e/src/batch.rs#L154
https://github.com/ZcashFoundation/ed25519-zebra/blob/612e51af2e7eaa228f9a08ad38b0b0660e510d9e/src/batch.rs#L214
https://github.com/ZcashFoundation/ed25519-zebra/pull/75
https://github.com/ZcashFoundation/ed25519-zebra/pull/75
https://github.com/ZcashFoundation/redjubjub/tree/0.5.0
https://github.com/ZcashFoundation/redjubjub/tree/0.5.0
https://github.com/ZcashFoundation/redjubjub/tree/0.5.0
https://github.com/ZcashFoundation/reddsa/tree/0.4.0
https://github.com/ZcashFoundation/reddsa/tree/0.4.0
https://github.com/ZcashFoundation/reddsa/tree/0.4.0
https://github.com/ZcashFoundation/redjubjub/blob/e19279f70f3999627b4076386848d1956b18560e/src/scalar_mul.rs#L62
https://github.com/ZcashFoundation/redjubjub/blob/e19279f70f3999627b4076386848d1956b18560e/src/scalar_mul.rs#L62
https://github.com/ZcashFoundation/reddsa/blob/507dcdf695bbc7eccd5d6b8e3c0d62625a45e4e9/src/scalar_mul.rs#L67
https://github.com/ZcashFoundation/reddsa/blob/507dcdf695bbc7eccd5d6b8e3c0d62625a45e4e9/src/scalar_mul.rs#L67
https://github.com/ZcashFoundation/reddsa/blob/507dcdf695bbc7eccd5d6b8e3c0d62625a45e4e9/src/orchard.rs#L86
https://github.com/ZcashFoundation/reddsa/blob/507dcdf695bbc7eccd5d6b8e3c0d62625a45e4e9/src/orchard.rs#L86
https://github.com/ZcashFoundation/reddsa/blob/507dcdf695bbc7eccd5d6b8e3c0d62625a45e4e9/src/orchard.rs#L86
https://github.com/ZcashFoundation/reddsa/blob/507dcdf695bbc7eccd5d6b8e3c0d62625a45e4e9/src/orchard.rs#L86
https://github.com/ZcashFoundation/reddsa/blob/507dcdf695bbc7eccd5d6b8e3c0d62625a45e4e9/src/orchard.rs#L185
https://github.com/ZcashFoundation/reddsa/blob/507dcdf695bbc7eccd5d6b8e3c0d62625a45e4e9/src/orchard.rs#L185

whose scalars fit on 32 bytes, then 256 digits are not enough: a curve whose order is

greater than 2
255

 + 2
247

 (e.g. secp256k1, or NIST’s P-256) may need up to 257 digits for

its scalars in w-NAF representation.

For the Jubjub and Pallas curves, the performance effect is slight, but the implementation

could be made slightly faster, and more robust (if generalized to all up-to-256-bits curves),

by applying the two following changes:

The non_adjacent_form() function may return 257 digits instead of 256.

The non_adjacent_form() function may also return the actual index of the topmost

non-zero digit, allowing optional_multiscalar_mul() to start its loop at that index,

thus skipping extra digits of value zero.

Update: NCC Group confirmed that these notes have been addressed in https://

github.com/ZcashFoundation/reddsa/pull/63.

TODOs with Closed Tasks

There are a number of TODOs in the codebase that use task numbers that are already

closed. For instance, issue #862 states that the Sync process’s state_contains() API only

checks the best chain for a given block hash (zebrad/src/components/sync.rs), rather than

checking all the available chains in the mempool. The audited version of the library still

queries the best chain in state and the task is closed.

Another example is issue #2214 which suggests that the fanout handling should be done

by the PeerSet so that all the fanouts would not use the same peer and block themselves.

This seems to be an issue only on testnet where nodes are not as well connected as

mainnet and the task is closed. This issue is referenced in a TODO in zebrad/src/

components/sync.rs.

Update: In response to this note, the Zcash team has created a Tracking: TODOs with

closed tasks and is actively addressing them.

XXX as a TODO Label

It was observed that several annotations in the codebase contain the string “XXX” and

appear to represent a TODO or future task. These items may not be identified or

documented via code searches for open issues. Examples include:

•

•

6

7

8

/// A very basic retry policy with a limited number of retry attempts.

///

/// XXX Remove this when <https://github.com/tower-rs/tower/pull/414> lands.

38 / 49 – Implementation Review Notes

https://github.com/ZcashFoundation/reddsa/pull/63
https://github.com/ZcashFoundation/reddsa/pull/63
https://github.com/ZcashFoundation/zebra/issues/862
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebrad/src/components/sync.rs#L961
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebrad/src/components/sync.rs#L961
https://github.com/ZcashFoundation/zebra/issues/2214
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebrad/src/components/sync.rs#L547
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebrad/src/components/sync.rs#L547
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebrad/src/components/sync.rs#L547
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebrad/src/components/sync.rs#L547
https://github.com/ZcashFoundation/zebra/issues/6281
https://github.com/ZcashFoundation/zebra/issues/6281

Figure 16: zebra-network/src/constants.rs

Figure 17: zebra-network/src/policies.rs

Figure 18: zebra-network/src/peer/connection.rs

The above examples are not exhaustive. It is recommended to review the codebase for the

XXX tag (or any other similar tag) and align them with a consistent approach to task

tracking.

Update: NCC Group confirmed that this note has been addressed in https://github.com/

ZcashFoundation/zebra/pull/6417.

Peer Starving

The following open TODO item from src/peer/connection.rs is noted:

This would seem to be an worthwhile item to prioritize for resolution. While NCC Group

concurs that it is unlikely in practice, it nevertheless could compound with other factors to

strengthen network-level attacks.

Update: NCC Group confirmed that the documentation has been updated to address this

issue in https://github.com/ZcashFoundation/zebra/pull/6488.

Lack of Integration Testing

While investigating a potential mishandled failure scenario, NCC Group noticed a lack of

integration testing between the consensus block verifier service and read state service. It

is highly recommended that in addition to testing individual services, the interaction

between them be tested for potential request/response mishandling. Consider the

9

10

11

12

13

14

136

137

138

139

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]

pub struct RetryLimit {

remaining_tries: usize,

}

// XXX should these constants be split into protocol also?

use crate::protocol::external::types::*;

fn process_message(&mut self, msg: Message) -> Option<Message> {

let mut ignored_msg = None;

// XXX can this be avoided?

let tmp_state = std::mem::replace(self, Handler::Finished(Ok(Response::Nil)));

// CORRECTNESS

//

// Currently, select prefers the first future if multiple

// futures are ready.

//

// The peer can starve client requests if it sends an

// uninterrupted series of messages. But this is unlikely in

// practice, due to network delays.

//

// If both futures are ready, there's no particular reason

// to prefer one over the other.

//

// TODO: use `futures::select!`, which chooses a ready future

// at random, avoiding starvation

// (To use `select!`, we'll need to map the different

// results to a new enum types.)

39 / 49 – Implementation Review Notes

https://github.com/ZcashFoundation/zebra/blob/6f896ef5a52540dfdbd19791a6433b00de6eee10/zebra-network/src/policies.rs#L6-L12
https://github.com/ZcashFoundation/zebra/blob/6f896ef5a52540dfdbd19791a6433b00de6eee10/zebra-network/src/policies.rs#L6-L12
https://github.com/ZcashFoundation/zebra/blob/a4cb835e129b9203cc84ce8cd3495689a04f37a2/zebra-network/src/constants.rs#L13-L14
https://github.com/ZcashFoundation/zebra/blob/a4cb835e129b9203cc84ce8cd3495689a04f37a2/zebra-network/src/constants.rs#L13-L14
https://github.com/ZcashFoundation/zebra/blob/a4c5f75b4603215ecff01b940dceed7bb5ec633a/zebra-network/src/peer/connection.rs#L136-L139
https://github.com/ZcashFoundation/zebra/blob/a4c5f75b4603215ecff01b940dceed7bb5ec633a/zebra-network/src/peer/connection.rs#L136-L139
https://github.com/ZcashFoundation/zebra/pull/6417
https://github.com/ZcashFoundation/zebra/pull/6417
https://github.com/ZcashFoundation/zebra/pull/6488

following example: zebra-consensus prevents double spending by detecting duplicated

nullifiers and anchors in a transaction, a block, and main chain’s history. It uses the read

state service from the zebra-state to ensure a nullifier or anchor has not been used to

spend the input note in the past.

Figure 19: zebra-state/src/service.rs

The highlighted lines in the snippet above returns a ValidateContextError error if a

duplicate is found. On the zebra-consensus side, this response is handled in the following

snippet:

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

417

418

419

420

421

422

423

424

425

426

ReadRequest::CheckBestChainTipNullifiersAndAnchors(unmined_tx) => {

let timer = CodeTimer::start();

let state = self.clone();

let span = Span::current();

tokio::task::spawn_blocking(move || {

span.in_scope(move || {

let latest_non_finalized_best_chain =

state.latest_non_finalized_state().best_chain().cloned();

check::nullifier::tx_no_duplicates_in_chain(

&state.db,

latest_non_finalized_best_chain.as_ref(),

&unmined_tx.transaction,

)?;

check::anchors::tx_anchors_refer_to_final_treestates(

&state.db,

latest_non_finalized_best_chain.as_ref(),

&unmined_tx,

)?;

// The work is done in the future.

timer.finish(module_path!(), line!(), "ReadRequest::UnspentBestChainUtxo");

Ok(ReadResponse::ValidBestChainTipNullifiersAndAnchors)

})

})

.map(|join_result| join_result.expect("panic in ReadRequest::UnspentBestChainUtxo"))

.boxed()

}

if let Some(unmined_tx) = req.mempool_transaction() {

let check_anchors_and_revealed_nullifiers_query = state

.clone()

.oneshot(zs::Request::CheckBestChainTipNullifiersAndAnchors(

unmined_tx,

))

.map(|res| {

assert!(res? == zs::Response::ValidBestChainTipNullifiersAndAnchors,

"unexpected response to CheckBestChainTipNullifiersAndAnchors request");

Ok(())

}

40 / 49 – Implementation Review Notes

https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service.rs#L1555-L1586
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service.rs#L1555-L1586

Figure 20: zebra-consensus/src/transaction.rs

The res? in the assert!() on line 424, will propagate this error. NCC Group browsed the

repository for unit tests that would cover this interaction. It seems that the unit tests in the

zebra-consensus , either test for a duplicate inside a single transaction or duplicates inside

a block (see v4_transaction_with_conflicting_sprout_nullifier_inside_joinsplit_is_r

ejected() as an example), and there are no tests to validate the above code-path.

Update: NCC Group confirmed that this note has been addressed in https://github.com/

ZcashFoundation/zebra/pull/6665.

Outdated Documentation

The Chain::update_chain_state_with that is mentioned in the documentation for the with

_block_and_spent_utxos() function does not exist (see snippet below). It should probably

be replaced with update_chain_tip_with() . The same error exists in the book/src/dev/

rfcs/0012-value-pools.md document.

Figure 21: Snippet from zebra-state/src/request.rs.

Client Comment: “We don’t usually update RFCs, they are a point-in-time “request for

comments” from developers, but we have updated the appropriate rustdoc.”

Update: The Zcash Foundation team has added more details regarding this note in https://

github.com/ZcashFoundation/zebra/issues/6673. They also indicated that they do not

usually update RFCs, as they are a point-in-time “request for comments” from developers.

The documentation issue in the code snippet above is fixed in PR 6781.

A Closer Look at Zebra’s Finalized State

This note is mainly a discussion around zebra-state ’s handling of finalized block state.

The Zebrad application’s start command spawns the Syncer service which will continuously

request chain tips and blocks from the peers until it downloads and verifies enough history

of the chain to be able to validate blocks. It obtains some prospective tips and iteratively

tries to extend them and download the missing blocks. In the snippet below, the Syncer’s d

ownload_and_verify() function rejects blocks that are more than MAX_BLOCK_REORG_HEIGHT

(99) blocks from the tip height:

427

428

429

430

264

265

266

267

268

269

270

271

272

273

274

364

365

366

367

);

async_checks.push(check_anchors_and_revealed_nullifiers_query);

}

impl ContextuallyValidBlock {

/// Create a block that's ready for non-finalized `Chain` contextual validation,

/// using a [`PreparedBlock`] and the UTXOs it spends.

///

/// When combined, `prepared.new_outputs` and `spent_utxos` must contain

/// the [`Utxo`](transparent::Utxo)s spent by every transparent input in this block,

/// including UTXOs created by earlier transactions in this block.

///

/// Note: a [`ContextuallyValidBlock`] isn't actually contextually valid until

/// `Chain::update_chain_state_with` returns success.

pub fn with_block_and_spent_utxos(

// Get the finalized tip height, assuming we're using the non-finalized state.

//

// It doesn't matter if we're a few blocks off here, because blocks this low

// are part of a fork with much less work. So they would be rejected anyway.

41 / 49 – Implementation Review Notes

https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/transaction.rs#L417-L430
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/transaction.rs#L417-L430
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/transaction/tests.rs#L1155
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/transaction/tests.rs#L1155
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/transaction/tests.rs#L1155
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/transaction/tests.rs#L1155
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/transaction/tests.rs#L1155
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/transaction/tests.rs#L1155
https://github.com/ZcashFoundation/zebra/pull/6665
https://github.com/ZcashFoundation/zebra/pull/6665
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service/non_finalized_state/chain.rs#L1066
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service/non_finalized_state/chain.rs#L1066
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service/non_finalized_state/chain.rs#L1066
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/book/src/dev/rfcs/0012-value-pools.md?plain=1#L432
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/book/src/dev/rfcs/0012-value-pools.md?plain=1#L432
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/book/src/dev/rfcs/0012-value-pools.md?plain=1#L432
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/book/src/dev/rfcs/0012-value-pools.md?plain=1#L432
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/request.rs#L264-L274
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/request.rs#L264-L274
https://github.com/ZcashFoundation/zebra/issues/6673
https://github.com/ZcashFoundation/zebra/issues/6673
https://github.com/ZcashFoundation/zebra/pull/6781
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebrad/src/commands/start.rs#L200

Figure 22: Snippet from zebrad/src/components/sync/downloads.rs.

Then the Syncer uses a clone of the ChainVerifier to verify the newly downloaded block,

which for blocks below the latest configured checkpoint height will use the

CheckpointVerifier instead of full block verification. The CheckpointVerifier will not

process blocks beyond the target checkpoint until it receives all the required blocks that it

needs in order to be able to verify the blocks that chain back to the previous checkpoint. In

the snippet below, the CheckpointVerifier uses the state service to contextually verify

the block and commit it to the finalized state:

Figure 23: Snippet from zebra-consensus/src/checkpoint.rs.

Note that a checkpointed/finalized block can be a settled network upgrade or a block

beyond the rollback/reorg limit. The state service processes the finalized block and queues

it to be committed to state (finalized blocks can be persisted on disk
8
). The state service

368

369

370

371

372

373

374

375

376

377

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

//

// And if we're still checkpointing, the checkpointer will reject blocks behind

// the finalized tip anyway.

//

// TODO: get the actual finalized tip height

let min_accepted_height = tip_height

.map(|tip_height| {

block::Height(tip_height.0.saturating_sub(zs::MAX_BLOCK_REORG_HEIGHT))

})

.unwrap_or(block::Height(0));

let state_service = self.state_service.clone();

let commit_finalized_block = tokio::spawn(async move {

let hash = req_block

.rx

.await

.map_err(Into::into)

.map_err(VerifyCheckpointError::CommitFinalized)

.expect("CheckpointVerifier does not leave dangling receivers")?;

// We use a `ServiceExt::oneshot`, so that every state service

// `poll_ready` has a corresponding `call`. See #1593.

match state_service

.oneshot(zs::Request::CommitFinalizedBlock(req_block.block))

.map_err(VerifyCheckpointError::CommitFinalized)

.await?

{

zs::Response::Committed(committed_hash) => {

assert_eq!(committed_hash, hash, "state must commit correct hash");

Ok(hash)

}

_ => unreachable!("wrong response for CommitFinalizedBlock"),

}

});

8. Zebrad can be run in a mode in which the application deletes its cache on shutdown. See the

documentation for the configurable ephemeral flag for more details.

42 / 49 – Implementation Review Notes

https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebrad/src/components/sync/downloads.rs#L364-L377
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebrad/src/components/sync/downloads.rs#L364-L377
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/chain.rs#L132
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/chain.rs#L132
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/chain.rs#L132
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/checkpoint.rs#L920
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/checkpoint.rs#L920
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/checkpoint.rs#L920
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/checkpoint.rs#L980-L1002
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-consensus/src/checkpoint.rs#L980-L1002
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/config.rs#L49-L61

will not commit any non-finalized blocks until the finalized blocks’ queue is fully drained

and committed:

Figure 24: Snippet from zebra-state/src/service.rs.

Once the finalized block writer is finished, the state service will validate and commit the

non-finalized queued blocks whose parents have recently arrived in breadth-first ordering

(lowest to highest heights). Thus, when validate_and_commit_non_finalized() calls the c

heck::initial_contextual_validity() for the first time there are some finalized blocks in

the state to be used to validate the block’s difficulty threshold and timestamp. The

assert_eq!() check below expects at least 28 blocks in the relevant chain:

Figure 25: Snippet from zebra-state/src/service/check.rs.

For the first non-finalized block to be validated there must be at least 28 blocks in the

finalized state. If an honest node fails to obtain enough finalized blocks from its peers

during syncing, when it starts to contextually validate the pending non-finalized blocks, it

will fail this assertion and crash the Zebra node.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

85

86

87

88

89

90

91

92

93

94

95

96

97

// We've finished sending finalized blocks when:

// - we've sent the finalized block for the last checkpoint, and

// - it has been successfully written to disk.

//

// We detect the last checkpoint by looking for non-finalized blocks

// that are a child of the last block we sent.

//

// TODO: configure the state with the last checkpoint hash instead?

if self.finalized_block_write_sender.is_some()

&& self

.queued_non_finalized_blocks

.has_queued_children(self.last_sent_finalized_block_hash)

&& self.read_service.db.finalized_tip_hash() == self.last_sent_finalized_block_hash

{

// Tell the block write task to stop committing finalized blocks,

// and move on to committing non-finalized blocks.

std::mem::drop(self.finalized_block_write_sender.take());

// We've finished committing finalized blocks, so drop any repeated queued blocks.

self.clear_finalized_block_queue(

"already finished committing finalized blocks: dropped duplicate block, \

block is already committed to the state",

);

}

// skip this check during tests if we don't have enough blocks in the chain

#[cfg(test)]

if relevant_chain.len() < POW_AVERAGING_WINDOW + POW_MEDIAN_BLOCK_SPAN {

return Ok(());

}

// process_queued also checks the chain length, so we can skip this assertion during testing

// (tests that want to check this code should use the correct number of blocks)

assert_eq!(

relevant_chain.len(),

POW_AVERAGING_WINDOW + POW_MEDIAN_BLOCK_SPAN,

"state must contain enough blocks to do proof of work contextual validation, \

and validation must receive the exact number of required blocks"

);

43 / 49 – Implementation Review Notes

https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service.rs#L639-L662
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service.rs#L639-L662
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service/write.rs#L43
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service/write.rs#L43
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service/write.rs#L43
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service/check.rs#L85-L97
https://github.com/ZcashFoundation/zebra/blob/5a88fe783c4c219beb94362b78974555fa1a398b/zebra-state/src/service/check.rs#L85-L97

After further discussions with the Zcash Foundation team, it was determined that this

assertion will not be triggered in cases where the parent block or the UTXO transactions

that are required to contextually validate the block are missing, as in these cases, the block

validation will not proceed until sufficient history is acquired. Furthermore, blocks are

validated in strict height order, and non-finalized blocks will not be processed until after all

the checkpointed blocks are committed to the finalized state. The Zebra application is

configured such that, by default, it pulls at least 2 million checkpointed blocks
9
, as such

the assertion will always be satisfied.

A relevant issue (“On startup, check that the finalized state blocks match the checkpoint

hashes”) was fixed by the maintainers after the audit branch was cut. It ensures that, on

startup, the Zebrad node would not indefinitely follow a forked chain that does not include

the socially accepted checkpoints.

Update: The Zcash Foundation team has added more details regarding this note in https://

github.com/ZcashFoundation/zebra/discussions/6620. In addition, this note’s concerns

have been addressed by replacing the mentioned assertion in

block_is_valid_for_recent_chain() with a validation error (ValidateContextError::NotR

eadyToBeCommitted). See https://github.com/ZcashFoundation/zebra/pull/7072 for details.

Notes on Peer Sourcing

When a peer initially connects to the network, they start by sourcing peers from a list of

known-good mainnet peers. The default list is specified in code in zebra/zebra-network/

src/config.rs , although users can override it by generating and editing a zebrad.toml

config file.

The use of a variety of trusted introduction points with distinctive, easily recognized names

is considered a best practice. However, taken together, these endpoints do represent a

degree of centralization in the network infrastructure. While users technically can change

or extend this list, it is doubtful that many of them will.

Additionally, changes to the default list would not be propagated to any user who has

made local modifications. One could imagine a case where one of the default mainnet

peers is compromised, loses trust, and is removed from the list, but peers who edited their

configuration to extend this list fail to receive this change and continue connecting to a

malicious peer.

Scenarios such as this one could be mitigated by decomposing the default mainnet peer

list into two lists: one, the “officially sanctioned” default list, which users technically could

edit but are not expected to, and another, which may default to an empty list, which is

intended to contain any additional peers a user may wish to use by default. This would

simplify peer list maintenance, leading to better user experience and maintainability. It

could also act as a subtle encouragement for peers to diversify their set of introduction

points, which would be good for network health and resilience (as long as users vet any

new introduction points to their satisfaction out-of-band).

277

278

279

280

281

282

let mainnet_peers = [

"dnsseed.z.cash:8233",

"dnsseed.str4d.xyz:8233",

"mainnet.seeder.zfnd.org:8233",

"mainnet.is.yolo.money:8233",

]

9. See init_checkpoint_list() from the zebra-consensus router for details. Note that this

reference is ahead of the audited commit.

44 / 49 – Implementation Review Notes

https://github.com/ZcashFoundation/zebra/issues/5912
https://github.com/ZcashFoundation/zebra/issues/5912
https://github.com/ZcashFoundation/zebra/discussions/6620
https://github.com/ZcashFoundation/zebra/discussions/6620
https://github.com/ZcashFoundation/zebra/pull/7072
https://github.com/ZcashFoundation/zebra/blob/015a970e16a6c4913c6d1092633dac836570a5b7/zebra-consensus/src/router.rs#L393
https://github.com/ZcashFoundation/zebra/blob/015a970e16a6c4913c6d1092633dac836570a5b7/zebra-consensus/src/router.rs#L393
https://github.com/ZcashFoundation/zebra/blob/015a970e16a6c4913c6d1092633dac836570a5b7/zebra-consensus/src/router.rs#L393

As a further improvement, the degree of centralization could be reduced by following a

practice commonly seen in other peer-to-peer systems, e.g., torrent clients, where the

client will attempt, on startup, to reconnect to whoever it was connected to before it last

exited the network. The initial mainnet peers can be used as well, and should probably be

preferred
10

, but they are no longer treated as an exclusive source of truth
11

 regarding the

peer-to-peer network.

Update: The Zcash Foundation team has added more details regarding this note in https://

github.com/ZcashFoundation/zebra/issues/6675. In addition, this note is partially

addressed by periodically storing the latest peers from the address book to disk, and

adding them to the configured DNS seed peers on Zebrad startup. See https://github.com/

ZcashFoundation/zebra/pull/6739 for details.

10. When considering attacks at the level of the routing overlay, we can assume that malicious peers

will only refer us to other malicious peers, whereas honest peers may refer us to either a malicious or

an honest peer. Thus, even if we trust our introduction point, this trust is not fully transitive, and our

trust in other peers should be inversely correlated to the number of routing hops required to reach

them - although of course this level of trust cannot be precisely quantified in general. What we can

say in general is that even if our introduction points are not exclusively trusted, they are likely the

most trusted peers we have.

11. Slight caveat: the default peers likely - though not necessarily, if we’ve modified the peer list -

gave us our original introduction to these cached peers (either directly or by introducing their

introducers, etc). Therefore there is still a great deal of trust placed in these introduction points; the

improvement here is that we have to extend this trust for a shorter time window.

45 / 49 – Implementation Review Notes

https://github.com/ZcashFoundation/zebra/issues/6675
https://github.com/ZcashFoundation/zebra/issues/6675
https://github.com/ZcashFoundation/zebra/pull/6739
https://github.com/ZcashFoundation/zebra/pull/6739

6 Additional Code Changes

The following code changes were added to the Zebra codebase after the audit tag was

created. All the changes that resulted from this report’s findings and notes in the

Implementation Review Notes have been examined and documented in their corresponding

sections
12

. The following notes are added for completeness:

fix(state): Fix minute-long delays in block verification after a chain fork: refactors the

zebra-state ’s non-finalized chains’ implementation. It primarily simplifies the note

commitment trees’ maintenance logic and improves chain forking’s performance. Some unit

tests were broken by this change and fixing them is left as TODO s.

cleanup(consensus): Remove unused impl ZcashDeserialize for Height: removes the

unused ZcashSerialize implementation for the Height type to prevent misuse.

fix(mempool): Re-verify transactions that were verified at a different tip height: ensures

that a newly downloaded and verified transaction is added to the mempool, only-if the

current best tip is at the same height as the tip height that was used for transaction

validation.

fix(consensus): Check that Zebra’s state contains the social consensus chain on startup:

introduces a checkpoint verification task to be run at Zcashd start-up. This task ensures

that the finalized chain which is fetched from peers includes the socially accepted

checkpoints and is not an invalid fork of the chain. This change improves a new node’s

start-up performance by pruning invalid chains earlier.

fix(sync): Pause new downloads when Zebra reaches the lookahead limit: ensures that

the block syncer (downloader) pauses new downloads after the lookahead limit is reached.

With this measure, the downloader allows the verifier and state services to catch up, and

prevents downloading too many far ahead and possibly invalid blocks.

fix(rpc): Shut down the RPC server properly when Zebra shuts down: makes a new thread

that handles the RPC server’s shutdown. This measure prevents the encompassing tokio

task from panicking.

refactor(state): Make implementation of block consensus rules clearer: renames some

internal functions to make their functionality more clear.

Fix Halborn network security disclosures: limits memory usage that can lead to denial-of-

service attacks, e.g., limits the number of inventory hashes that are sent to the peer, limits

the number of inventory hashes that are stored, limits the number of peers that are tracked

for an inventory hash, limits the size of the VersionMessage that is stored for a peer, and

limits the log size on disk.

fix(net): Limit the number of leftover nonces in the self-connection nonce set: 1. limits the

time interval between inbound connections as well as outbound connections. 2. removes

leftover nonces that were not cleaned-up from the state due to their corresponding

handshakes’ failure.

fix(net): Allow each initial peer to send one inbound request before disconnecting any

peers: increases the maximum number of concurrent inbound connections to match the

target peer set. A lower inbound connections limit lead to connections being dropped at

startup.

12. These issues have been tracked by the project’s issue tracker in Epic: Improvements from Zebra

Audit.

46 / 49 – Additional Code Changes

https://github.com/ZcashFoundation/zebra/tree/audit-v1.0.0-rc.0
https://github.com/ZcashFoundation/zebra/pull/6122
https://github.com/ZcashFoundation/zebra/pull/6122
https://github.com/ZcashFoundation/zebra/pull/6139
https://github.com/ZcashFoundation/zebra/pull/6139
https://github.com/ZcashFoundation/zebra/pull/6154
https://github.com/ZcashFoundation/zebra/pull/6154
https://github.com/ZcashFoundation/zebra/pull/6163
https://github.com/ZcashFoundation/zebra/pull/6163
https://github.com/ZcashFoundation/zebra/pull/5561
https://github.com/ZcashFoundation/zebra/pull/5561
https://github.com/ZcashFoundation/zebra/pull/5591
https://github.com/ZcashFoundation/zebra/pull/5591
https://github.com/ZcashFoundation/zebra/pull/5915
https://github.com/ZcashFoundation/zebra/pull/5915
https://github.com/ZcashFoundation/zebra/pull/6297
https://github.com/ZcashFoundation/zebra/pull/6297
https://github.com/ZcashFoundation/zebra/pull/6534
https://github.com/ZcashFoundation/zebra/pull/6534
https://github.com/ZcashFoundation/zebra/pull/6520
https://github.com/ZcashFoundation/zebra/pull/6520
https://github.com/ZcashFoundation/zebra/pull/6520
https://github.com/ZcashFoundation/zebra/pull/6520
https://github.com/ZcashFoundation/zebra/issues/6277
https://github.com/ZcashFoundation/zebra/issues/6277

fix(ci): Avoid inbound service overloads and fix failing tests: fixes some frequently failing

tests and tweaks some constants. Moves the Inbound service’s startup higher in the

sequence of tasks that are created at Zebrad startup.

security(state): Limit the number of non-finalized chains tracked by Zebra: prunes the

non-finalized chains that are tracked in zebra-state by removing chains with the smallest

amount of work.

fix(rpc): Omit transactions with transparent coinbase spends that are immature at the

next block height from block templates: ensures that the getblocktemplate RPC method

does not construct blocks with spent transparent coinbase transactions that are immature.

fix(net): Avoid a rare panic when a connection is dropped: prevents a panic that could be

caused by a one-shot sender not receiving its response before it was dropped.

47 / 49 – Additional Code Changes

https://github.com/ZcashFoundation/zebra/pull/6537
https://github.com/ZcashFoundation/zebra/pull/6537
https://github.com/ZcashFoundation/zebra/pull/6447
https://github.com/ZcashFoundation/zebra/pull/6447
https://github.com/ZcashFoundation/zebra/pull/6510
https://github.com/ZcashFoundation/zebra/pull/6510
https://github.com/ZcashFoundation/zebra/pull/6510
https://github.com/ZcashFoundation/zebra/pull/6510
https://github.com/ZcashFoundation/zebra/pull/6566
https://github.com/ZcashFoundation/zebra/pull/6566

7 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these

recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of

a small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability,

as well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

Medium

48 / 49 – Finding Field Definitions

Rating Description

Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching,

etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

49 / 49 – Finding Field Definitions

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Fragile State Transition During Address Book Update
	Inconsistent Error and Constraint Checks for Arithmetic Operations on Block Height
	Incomplete Zeroization of the Private Key
	Unbounded Rejection Sampling with Possibility of Panics
	Uncaught Nonce Reuse and Fragile Nonce Cache Eviction
	Power-of-Two-Choices Load Balancing May Deprioritize Honest Peers
	Unenforced Constraint on Header Version in zcash_serialize
	Cargo Audit and RustSec Advisories
	Buffer Length Validation after Memory Allocation
	Private Keys May Be Written to Log Files
	Potential Panic on Integer Overflow when Hashing a Large Stream
	Off-by-One Errors and Inconsistent Usage of PARAMETER_DOWNLOAD_MAX_RETRIES
	Redundant Computation in Sapling and Orchard Note Validation
	Off-by-One Error in zebra-network Retry Parameter
	Incorrectly Disabled Consistency Check
	Fragile Address Limit Implementation

	Implementation Review Notes
	Additional Code Changes
	Finding Field Definitions
	Risk Scale
	Category

