
NCC Group Whitepaper

Jackson Deserialization Vulnerabilities
August 3, 2018 – Version 1.0

Prepared by
Robert C. Seacord – Technical Director

Abstract
The Jackson JSON processor offers an alternative to Java serialization by providing

data binding capabilities to serialize Java objects to JSON and deserialize JSON

back to Java objects. Poorly written Java code that deserializes JSON strings from

untrusted sources can be vulnerable to a range of exploits including remote com-

mand execution (RCE), denial-of-service (DoS), and other attacks. These attacks are

enabled by polymorphic type handling and deserialization to overly general super-

classes. This white paper describes the features of Jackson serialization that makes it

susceptible to exploitation, demonstrates a working exploit, and identifies effective

mitigation strategies.

Table of Contents

1 Introduction . 3

1.1 ObjectMapper Class . 3

1.2 Serialization Process . 4

2 Polymorphic Type Handling . 5

2.1 Providing Type Information . 6

3 Vulnerabilities . 8

3.1 Sample Exploit . 8

4 Mitigations . 10

5 Conclusion . 12

6 Acknowledgments . 13

7 Author Bio . 14

2 | Jackson Deserialization Vulnerabilities NCC Group

1 Introduction

Deserialization of untrusted data has been proven to be almost universally dangerous regardless of lan-

guage, platform, or serialization format. This class of vulnerability has beenwidely recognizedby the security

community for many years and is described by “CWE-502 Deserialization of Untrusted Data"1 and OWASP

vulnerability classifications Deserialization of Untrusted Data2 and Object Injection.3

Java serialization was introduced in JDK 1.1 and is a Core Java feature [Ora14, GJS+16] that allows devel-

opers to transform a graph of Java objects into a stream of bytes for storage or transmission and then back

into a graph of Java objects. Unfortunately, the Java serialization architecture is insecure which has led to

numerous vulnerabilities including remote code execution (RCE) anddenial-of-service (DoS) attacks [Sea17].

According to Oracle's Secure Coding Guidelines for Java SE [Ora17]:

Note: Deserialization of untrusted data is inherently dangerous and should be avoided.

Java Serialization provides an interface to classes that sidesteps the field access control mech-

anisms of the Java language. As a result, care must be taken when performing serialization

and deserialization. Furthermore, deserialization of untrusted data should be avoidedwhenever

possible, and should be performed carefully when it cannot be avoided.

As a result, developers have looked for alternative, secure solutions that provide the features and benefits of

Java Serialization. One of the more popular alternatives is the Jackson JSON Processor.4 Jackson provides

a framework and data binding capabilities to serialize arbitrary Java objects to JSON and deserialize the

JSON back to Java objects.5 This is similar to Java Serialization in that Java programmers can serialize and

deserialize plain old Java objects (POJO) and not just Java beans.

1.1 ObjectMapper Class

The primary class supporting Jackson Serialization is the com.fasterxml.jackson.databind.ObjectMap-

per class.6 ObjectMapper is highly customizable enabling it to work with different styles of JSON content

and to support advanced concepts such as polymorphism and object identity. The following code illustrates

the simplest usage of ObjectMapper to serialize and deserialize an object instance to and from a file:

// Serialize then deserialize MyValue object instance from a file.

final ObjectMapper mapper = new ObjectMapper(); // can use static singleton

MyValue value = new MyValue();

File f = new File("serializationdata.json");

// Serialize MyValue instance to file

mapper.writeValue(f, value);

// Deserialize MyValue instance from file

MyValue value = mapper.readValue(f, MyValue.class);

Jackson is one of multiple Java libraries that can serialize Java object graphs into various representations

(including YAML, AMF, JSON, XML, and various binary formats) and then restore the object graphs by de-

serialization. These libraries must interact with the source or target objects during serialization and dese-

rialization to retrieve and set their properties. This interaction is most commonly based on the JavaBean's

convention of accessing object properties through getter (getXyz(), possibly isXyz() for Boolean values)

1https://cwe.mitre.org/data/definitions/502.html
2https://www.owasp.org/index.php/Deserialization_of_untrusted_data
3https://www.owasp.org/index.php/PHP_Object_Injection
4https://github.com/FasterXML/jackson-docs
5http://www.studytrails.com/java/json/java-jackson-introduction/
6https://fasterxml.github.io/jackson-databind/javadoc/2.9/com/fasterxml/jackson/databind/ObjectMapper.html

3 | Jackson Deserialization Vulnerabilities NCC Group

https://cwe.mitre.org/data/definitions/502.html
https://www.owasp.org/index.php/Deserialization_of_untrusted_data
https://www.owasp.org/index.php/PHP_Object_Injection
https://github.com/FasterXML/jackson-docs
http://www.studytrails.com/java/json/java-jackson-introduction/
https://fasterxml.github.io/jackson-databind/javadoc/2.9/com/fasterxml/jackson/databind/ObjectMapper.html

and setter methods (setXyz()). Other techniques include accessing the Java fields directly or by using the

Java Reflection API [MM17, Bec17].

The expected root object type being deserialized is frequently known as the developer will want to do

something with this object once it has been reconstructed. This can be used to recursively determine

property types by using reflection.

1.2 Serialization Process

Jackson's serialization process is non-trivial and has evolved over time in an attempt to make it intuitive,

or at least, less astonishing. Jackson automatically detects properties and determines how to serialize and

deserialize them. The simplest way to ensure a field is both serializable and deserializable is to declare

it public [Par17]. The existence of a getter method (that is, any gettable field with a matching name)

makes non-public fields serializable. Unintuitively, any field with a getter is considered a property and

consequently deserializable. Non-public fields may be accessed by non-private getters. A setter method

only marks non-public fields as deserializable.

Jacksonprovides annotations that canmake serialization anddeserialization explicit. Annotations takeprece-

dence over automatic detection. Examples of annotations that influence serialization and deserialization

include:

• @JsonProperty indicates that property is to be included.

• @JsonAnySetter defines a two-argument method as "any setter", used for deserializing values of other-

wise unmapped JSON properties.

• @JsonCreator indicates that a constructor or static factory method should be used for creating value

instances during deserialization.

• @JsonSetter is an alternative to @JsonProperty for marking methods as setters.

Additional Jackson annotations are documented on GitHub.7

Single argument constructors are automatically detected if the parameter type is String, Boolean, boolean,

Integer, int, Long, or long.

MapperFeature controls many of the Jackson's automatic detection features. Refer to the documentation

to view a list of customizable features and identify which are enabled by default.8 Developers who prefer

explicit settings typically disable the auto-detection settings found in MapperFeature and seldom, if ever,

use default typing.

7https://github.com/FasterXML/jackson-annotations/wiki/Jackson-Annotations
8http://static.javadoc.io/com.fasterxml.jackson.core/jackson-databind/2.9.1/com/fasterxml/jackson/databind/MapperFeature.

html

4 | Jackson Deserialization Vulnerabilities NCC Group

https://github.com/FasterXML/jackson-annotations/wiki/Jackson-Annotations
http://static.javadoc.io/com.fasterxml.jackson.core/jackson-databind/2.9.1/com/fasterxml/jackson/databind/MapperFeature.html
http://static.javadoc.io/com.fasterxml.jackson.core/jackson-databind/2.9.1/com/fasterxml/jackson/databind/MapperFeature.html

2 Polymorphic Type Handling

Deserializationmust support polymorphic type handling to support Java inheritance andnon-concrete types

such as abstract classes and interfaces. The deserialization of these objects requires that appropriate type

information is included in the object's representation so that they can be restored as the appropriate types

[Sal17].

In the following example, serialization of Person instances is straightforward, as the types are available and

can be introspected for their properties.

public class Person {

public String name;

public int age;

public PhoneNumber phone; // embedded POJO

}

abstract class PhoneNumber {

public int areaCode, local;

}

public class InternationalNumber extends PhoneNumber {

public int countryCode;

}

public class DomesticNumber extends PhoneNumber { }

However, trying to restore these values generates an exception because PhoneNumber is an abstract type.

Abstract classes cannot be instantiated and Jackson cannot determine which subtype to use without further

information.

Polymorphic type handling is also required to correctly deserialize the following class hierarchy:

public class Zoo {

public Animal animal;

}

static class Animal { // All animals have names

public String name;

protected Animal() { }

}

static class Dog extends Animal {

public double barkVolume; // in decibels

public Dog() { }

}

static class Cat extends Animal {

boolean likesCream;

public int lives;

public Cat() { }

}

Serialization of these objects must include sufficient type information to allow deserialization to instantiate

the correct subtypes. In this example, deserialization can only statically determine that Zoo contains an

Animal. During serialization, additional type information must be included for deserialization to determine

if an Animal is a Cat or Dog instance.

5 | Jackson Deserialization Vulnerabilities NCC Group

2.1 Providing Type Information

Jackson provides multiple mechanisms for providing type information that can be used to enable polymor-

phic deserialization. The simplest of these mechanisms (and least secure) is to use default typing. Type

information can be enabled for all objects via ObjectMapper:

ObjectMapper mapper = new ObjectMapper();

mapper.enableDefaultTyping(); // defaults to OBJECT_AND_NON_CONCRETE

mapper.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);

The enableDefaultTyping method instructs ObjectMapper to include the Java class names for all non-

final classes using the default inclusion mechanism of an additional wrapper array in JSON. The Ob-

jectMapper.DefaultTyping enum can be used to limit the classes to which default typing is applied:

• JAVA_LANG_OBJECT: properties that have Object as the declared type (including generic types without

an explicit type).

• OBJECT_AND_NON_CONCRETE: properties with the declared type of Object or an abstract type (abstract

class or interface).

• NON_CONCRETE_AND_ARRAYS: all types covered by OBJECT_AND_NON_CONCRETE and arrays of these ele-

ment types.

• NON_FINAL: all non-final types except for String, Boolean, Integer, and Double which can be correctly

inferred from JSON; as well as for all arrays of non-final types.

Default typing is a security risk if used with untrusted content. A custom TypeResolverBuilder implemen-

tation can be used to limit possible types to instantiate:

setDefaultTyping(

com.fasterxml.jackson.databind.jsontype.TypeResolverBuilder<?>)

);

Type information can also be provided using Jackson polymorphic type handling annotations:

• @JsonTypeInfo indicates details of what type information is included in serialization. This annotation can

be used both for types (classes) and properties.

• @JsonSubTypes indicates sub-types of annotated type

• @JsonTypeName defines logical type name to use for annotated class

The previous Zoo example can be annotated as follows:

public class Zoo {

public Animal animal;

@JsonTypeInfo(

use = JsonTypeInfo.Id.NAME,

include = As.PROPERTY,

property = "type")

@JsonSubTypes({

@JsonSubTypes.Type(value = Dog.class, name = "dog"),

@JsonSubTypes.Type(value = Cat.class, name = "cat")

)}

public static class Animal {

6 | Jackson Deserialization Vulnerabilities NCC Group

public String name;

}

@JsonTypeName("dog")

public static class Dog extends Animal {

public double barkVolume;

}

@JsonTypeName("cat")

public static class Cat extends Animal {

boolean likesCream;

public int lives;

}

}

These annotations allow the subclasses to be properly reconstructed. The JsonTypeInfo.Id specifies if

the type identifier is the fully-qualified Java class name, the Java class name with minimal path, the logical

name, uses a custom mechanism, or that no explicit type metadata is included and typing is purely done

using contextual information, possibly augmented with other annotations. The @JsonTypeInfo for the

Animal class specifies use of the logical name. The JsonTypeInfo.As enumeration specifies the inclusion

mechanism. Several inclusion mechanisms are possible including as a single, configurable property or a

wrapper array or wrapper object. Calling the enableDefaultTypingmethod is equivalent to the following

annotation:

@JsonTypeInfo(use = Id.CLASS, include = As.WRAPPER_ARRAY)

One issue with this use of Jackson annotations is that it breaks encapsulation by having dependencies from

the supertype to any possible subtype. This would make it difficult to use this mechanism, for example,

when subclassing a class from a third party library. There is no way to address this problem with Jackson

annotations, but it is also possible to register a specified class as a subtype using the registerSubtypes

method in ObjectMapper or implementing a custom TypeResolverBuilder.

The ability to indicate all types is a core requirement for flexible deserialization. A significant portion of real

usage defines java.lang.Object—allowing any class which can be resolved to be deserialized.

7 | Jackson Deserialization Vulnerabilities NCC Group

3 Vulnerabilities

Poorly written Java code that deserializes JSON strings from untrusted sources can be vulnerable to a range

of exploits including remote command execution (RCE), denial-of-service (DoS), and other attacks. These

attacks are possible when an attacker can control the contents of the JSON to specify the deserialization of

dangerous objects that will invoke specific methods already present in the JVM with attacker-supplied data.

Security researchers have identified a wide-variety of existing classes that can be used to violate the security

policies of a vulnerable Java program. These classes are often referred to as gadgets because they are

similar to gadgets in return-oriented programming [Sha07]. Gadgets consist of existing, executable code

present in the vulnerable process that can be maliciously repurposed by an attacker. In the case of Jackson

deserialization vulnerabilities, these classes contain code that is executed when an object is deserialized.

The following is a partial list of known gadgets taken from the black list for Jackson deserialization9:

• org.apache.commons.collections.functors.InvokerTransformer

• org.apache.commons.collections.functors.InstantiateTransformer

• org.apache.commons.collections4.functors.InvokerTransformer

• org.apache.commons.collections4.functors.InstantiateTransformer

• org.codehaus.groovy.runtime.ConvertedClosure

• org.codehaus.groovy.runtime.MethodClosure

• org.springframework.beans.factory.ObjectFactory

• com.sun.org.apache.xalan.internal.xsltc.trax.TemplatesImpl

3.1 Sample Exploit

Asample exploit, available onGitHub10wasdeveloped todemonstrate the useof thecom.sun.org.apache.xalan.in-

ternal.xsltc.trax.TemplatesImpl gadget.

The Xalan-Java Compiling processor, XSLTC, can be used to compile the following source code into byte-

codes for a translet object within the TemplatesImpl instance:

java.lang.Runtime.getRuntime().exec(new String[] { "Calc.exe" });

This gadget is encoded in the following JSON string:

["org.apache.xalan.xsltc.trax.TemplatesImpl",

{

"transletBytecodes":["…yv66vg"],

"transletName":"foo",

"outputProperties":{}

}

]

Note that the bytecodes and not the actual class definitions are stored when serializing a TemplatesImpl

object.

The transletBytecodes are executed when the getOutputProperties method is called by reflection

during deserialization to read the outputProperties property as can be seen in the following stack trace:

9https://github.com/FasterXML/jackson-databind/commit/fd8dec2c7fab8b4b4bd60502a0f1d63ec23c24da
10https://github.com/rcseacord/JavaSCR/tree/master/JavaSCR/src/jackson

8 | Jackson Deserialization Vulnerabilities NCC Group

https://github.com/FasterXML/jackson-databind/commit/fd8dec2c7fab8b4b4bd60502a0f1d63ec23c24da
https://github.com/rcseacord/JavaSCR/tree/master/JavaSCR/src/jackson

<init>:56, Pwner60092316258519 (ysoserial)

newInstance0:-1, NativeConstructorAccessorImpl (sun.reflect)

newInstance:62, NativeConstructorAccessorImpl (sun.reflect)

newInstance:45, DelegatingConstructorAccessorImpl (sun.reflect)

newInstance:422, Constructor (java.lang.reflect)

newInstance:442, Class (java.lang)

getTransletInstance:340, TemplatesImpl (org.apache.xalan.xsltc.trax)

newTransformer:369, TemplatesImpl (org.apache.xalan.xsltc.trax)

getOutputProperties:390, TemplatesImpl (org.apache.xalan.xsltc.trax)

invoke0:-1, NativeMethodAccessorImpl (sun.reflect)

invoke:62, NativeMethodAccessorImpl (sun.reflect)

invoke:43, DelegatingMethodAccessorImpl (sun.reflect)

invoke:497, Method (java.lang.reflect)

deserializeAndSet:105, SetterlessProperty (com.fasterxml.jackson.databind.deser.impl)

vanillaDeserialize:260, BeanDeserializer (com.fasterxml.jackson.databind.deser)

deserialize:125, BeanDeserializer (com.fasterxml.jackson.databind.deser)

_deserialize:110, AsArrayTypeDeserializer (com.fasterxml.jackson.databind.jsontype.

impl)

deserializeTypedFromAny:68, AsArrayTypeDeserializer (com.fasterxml.jackson.databind.

jsontype.impl)

deserializeWithType:554, UntypedObjectDeserializer$Vanilla (com.fasterxml.jackson.

databind.deser.std)

deserialize:42, TypeWrappedDeserializer (com.fasterxml.jackson.databind.deser.impl)

_readMapAndClose:3789, ObjectMapper (com.fasterxml.jackson.databind)

readValue:2779, ObjectMapper (com.fasterxml.jackson.databind)

deserialize:46, Cage (jackson)

main:121, Cage (jackson)

This exploit is interesting in that it makes use of Java code already present in the JVM (Xalan) and injected

code (the exec call). The exploit is also interesting in that it utilizes a getter and not a setter method.

Thedeserialization vulnerability exploited in this example occurs in jackson-databind versions before 2.6.7.1,

2.7.9.1 and 2.8.9 and is described by CVE-2017-752511 and tracked as “Jackson Deserializer security vulner-

ability via default typing (CVE-2017-7525) #1599".12 The sample exploit was testedwithJackson-databind-

2.7.3. The exploit was successfully executed against both:

• JRE Xalan (com.sun.org.apache.xalan) using JDK 8u40

• Apache Xalan (org.apache.xalan) using the latest release available at the time (Xalan-Java Version 2.7.1)

11https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7525
12https://github.com/FasterXML/jackson-databind/issues/1599

9 | Jackson Deserialization Vulnerabilities NCC Group

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7525
https://github.com/FasterXML/jackson-databind/issues/1599

4 Mitigations

The primary mitigation for Jackson deserialization vulnerabilities is to never deserialize untrusted data. The

deserialization of untrusted data is inherently unsafe because the attacker can tamper with the data. In

the exploit detailed in this paper, the attacker exploits this to remotely execute arbitrary commands on the

vulnerable system. However, the attacker may also simply create objects with invalid invariants that may be

used to corrupt the system data or to circumvent security controls.

Jackson has added a blacklist of known gadget types to mitigate the risk from exploits using these gad-

gets13,.14 Blacklists are not a particularly effective solution and can be best thought of as a stopgapmeasure.

The blacklist is only effective if the set of all dangerous gadgets can be enumerated. This is clearly not the

case as can be seen in the following table of CVE details15:

The last entry in the table for CVE-2017-7525 describes the original vulnerability while later CVEs are the

result of gadget types that were omitted, and consequently bypass, the blacklist mechanism. Furthermore,

it would be foolish to think that the current blacklist is complete as gadgets discovered by attackers are

seldom reported.

13https://github.com/FasterXML/jackson-databind/issues/1599
14https://github.com/FasterXML/jackson-databind/commit/fd8dec2c7fab8b4b4bd60502a0f1d63ec23c24da
15https://www.cvedetails.com/vulnerability-list/vendor_id-15866/product_id-42991/Fasterxml-Jackson-databind.html

10 | Jackson Deserialization Vulnerabilities NCC Group

https://github.com/FasterXML/jackson-databind/issues/1599
https://github.com/FasterXML/jackson-databind/commit/fd8dec2c7fab8b4b4bd60502a0f1d63ec23c24da
https://www.cvedetails.com/vulnerability-list/vendor_id-15866/product_id-42991/Fasterxml-Jackson-databind.html

Besides not deserializing untrusteddata, themost effectivemitigationof the risk fromJacksondeserialization

vulnerabilities is to eliminate the two conditionswhich allow it. The first of these is polymorphic type handling

using the names of the classes to identify the classes. The most dangerous example of this is a call to

the enableDefaultTyping method which instructs ObjectMapper to include the Java class names for all

non-final classes. When polymorphic type handling is required, it is best to consider it to be a privilege

and following the principle of least privilege [SS75]. Polymorphic type handling should only be enabled

for types that require this mechanism for proper deserialization. It can be implemented using a custom

TypeResolverBuilder implementation or the use of Jackson polymorphic type handling annotations. It is

also important to specify the type using the logical name and not the class name, for example: @JsonType-

Info(use = Id.NAME).

The second issue is overly permissive deserialization types. Unfortunately, it is common practice to allow

any objects to be deserialized, as in the following example:

private static Object deserialize(String data) throws IOException {

ObjectMapper mapper = new ObjectMapper();

mapper.enableDefaultTyping();

// deserialize as Object or permissive tag interfaces such as java.io.Serializable

return mapper.readValue(data, Object.class);

}

Interface types such as java.util.Serializable are also dangerous because these types are commonly

implemented by classes that may be used as gadgets.

Instead of specifying Object.class, the developer should specify the specific type of the expected root

object. These objects must be carefully written to ensure that they cannot be used as a gadget in an exploit.

Jackson allows various features of deserialization to be customized, including a number of features to en-

able/disable failure modes. Enabling all failure modes will provide additional input validation and should

help improve security. In particularly, do not disable the FAIL_ON_UNKNOWN_PROPERTIES feature (which is

enabled by default):

mapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);

Disabling this feature typically masks a wide range of problems.

11 | Jackson Deserialization Vulnerabilities NCC Group

5 Conclusion

Poorly written Java code that deserializes JSON strings from untrusted sources can be vulnerable to a range

of exploits including remote command execution (RCE), denial-of-service (DoS), and other attacks. These

attacks are possible under two conditions. First, the Java class name (either the fully-qualified or minimal

path) is included with the JSON to identify the object type during deserialization. Second, the resulting type

of the deserialized object has a subclass, or an interface implementation that can be used as a gadget.

Most serialization libraries are susceptible to remote command execution and other exploits when deseri-

alizing untrusted serialized data. Jackson does not perform typing by default (including collection generic

types) and does not allow the specification of arbitrary types. Unfortunately, default typing is necessary to

correctly deserialize Java subclasses and it is common practice to for developers to specify java.lang.Ob-

ject.class to allow any object to be serialized anddeserialized. The combination of polymorphic type han-

dling and deserialization to overly general superclasses allows attackers to provide specially-crafted JSON

which can be used in a wide-variety of attacks including, but not limited to, remote command execution.

12 | Jackson Deserialization Vulnerabilities NCC Group

6 Acknowledgments

Thanks to JeremyBrandt-Young, GeneMeltser, DavidGoldsmith, AndyGrant, andClintGibler for supporting

this effort. Thanks to the technical reviewers Peter Greko, Paul Tetreau, Tatu Saloranta, Moritz Bechler, and

Fred Long (Aberystwyth University).

13 | Jackson Deserialization Vulnerabilities NCC Group

7 Author Bio

Robert C. Seacord is a Technical Director with NCC Group where he

works with software developers and software development organizations

to eliminate vulnerabilities resulting from coding errors before they are

deployed. Previously, Robert led the secure coding initiative in the CERT

Division of Carnegie Mellon University's Software Engineering Institute

(SEI). Robert is also an adjunct professor in the School of Computer Science

and the Information Networking Institute at Carnegie Mellon University.

Robert is the author of six books, including The CERT C Coding Standard,

Second Edition (Addison-Wesley, 2014), Secure Coding in C and C++,

Second Edition (Addison-Wesley, 2013), The CERT Oracle Secure Coding

Standard for Java (Addison-Wesley, 2012) [LMS+11], and Java Coding

Guidelines: 75 Recommendations for Reliable and Secure Programs

(Addison-Wesley, 2014) [LMS+13]. Robert is on the Advisory Board for

the Linux Foundation and an expert on the ISO/IEC JTC1/SC22/WG14

international standardization working group for the C programming

language.

14 | Jackson Deserialization Vulnerabilities NCC Group

References

[Bec17] Moritz Bechler. Java unmarshaller security: Turning your data into code execution. https://github.

com/mbechler/marshalsec/blob/master/marshalsec.pdf, May 22, 2017. 4

[GJS+16] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. Java language specification:

Java se 8 edition. https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf, 2016. 3

[LMS+11] Fred Long, Dhruv Mohindra, Robert C Seacord, Dean F Sutherland, and David Svoboda. The

CERT Oracle Secure Coding Standard for Java. Addison-Wesley Professional, 2011. 14

[LMS+13] Fred Long, Dhruv Mohindra, Robert C Seacord, Dean F Sutherland, and David Svoboda. Java

coding guidelines: 75 recommendations for reliable and secure programs. Addison-Wesley,

2013. 14

[MM17] Alvaro Muñoz and Oleksandr Mirosh. Friday the 13th: Json attacks. https://www.blackhat.com/

docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf, July 2017. 4

[Ora14] Oracle. Java platform, standard edition 8 api specification. https://docs.oracle.com/javase/8/

docs/api/, 2014. 3

[Ora17] Oracle. Secure coding guidelines for java se, version 6.0 updated for java se 9. http://www.oracle.

com/technetwork/java/seccodeguide-139067.html, September 28, 2017. 3

[Par17] Eugen Paraschiv. Jackson - decide what fields get serialized/deserialized. http://www.baeldung.

com/jackson-field-serializable-deserializable-or-not, July 20, 2017. 4

[Sal17] Tatu Saloranta. On jackson cves: Don't panic—here is what you need to know. https://medium.

com/@cowtowncoder/on-jackson-cves-dont-panic-here-is-what-you-need-to-know-54cd0d6

e8062, December 22, 2017. 5

[Sea17] Robert Seacord. Combating java deserialization vulnerabilities with look-ahead object input

streams (laois). https://www.nccgroup.trust/us/our-research/combating-java-deserialization-

vulnerabilities-with-look-ahead-object-input-streams-laois/, 2017. 3

[Sha07] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function

calls (on the x86). In Proceedings of the 14th ACM conference on Computer and communications

security, pages 552–561. ACM, 2007. 8

[SS75] Jerome H Saltzer and Michael D Schroeder. The protection of information in computer systems.

Proceedings of the IEEE, 63(9):1278–1308, 1975. 11

15 | Jackson Deserialization Vulnerabilities NCC Group

https://github.com/mbechler/marshalsec/blob/master/marshalsec.pdf
https://github.com/mbechler/marshalsec/blob/master/marshalsec.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-JSON-Attacks-wp.pdf
https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.baeldung.com/jackson-field-serializable-deserializable-or-not
http://www.baeldung.com/jackson-field-serializable-deserializable-or-not
https://medium.com/@cowtowncoder/on-jackson-cves-dont-panic-here-is-what-you-need-to-know-54cd0d6e8062
https://medium.com/@cowtowncoder/on-jackson-cves-dont-panic-here-is-what-you-need-to-know-54cd0d6e8062
https://medium.com/@cowtowncoder/on-jackson-cves-dont-panic-here-is-what-you-need-to-know-54cd0d6e8062
https://www.nccgroup.trust/us/our-research/combating-java-deserialization-vulnerabilities-with-look-ahead-object-input-streams-laois/
https://www.nccgroup.trust/us/our-research/combating-java-deserialization-vulnerabilities-with-look-ahead-object-input-streams-laois/

	Introduction
	ObjectMapper Class
	Serialization Process

	Polymorphic Type Handling
	Providing Type Information

	Vulnerabilities
	Sample Exploit

	Mitigations
	Conclusion
	Acknowledgments
	Author Bio

